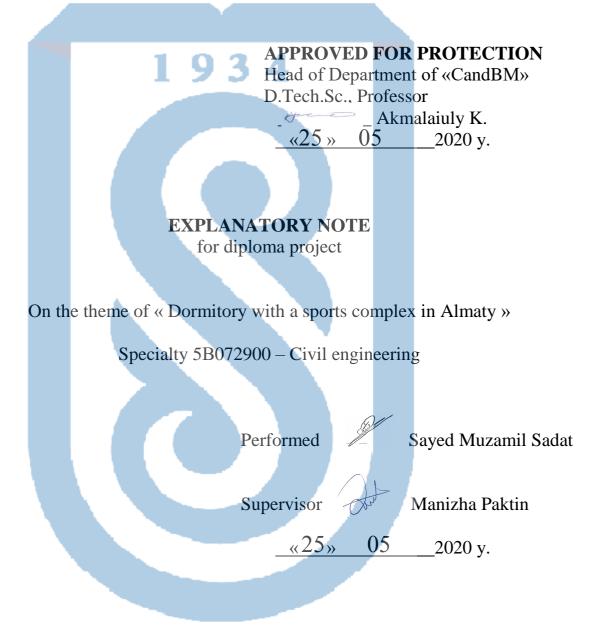

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Kazakh National Research Technical University named after K.I. Satbayev

Institute of Architecture and construction named after T.K. Bassenov

Department «Construction and construction materials»


Almaty, 2020 y.

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Kazakh National Research Technical University named after K.I. Satbayev

Institute of Architecture and construction named after T.K. Bassenov

Department «Construction and building materials»

Almaty, 2020 y.

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN

Kazakh National Research Technical University named after K.I. Satbayev Institute of Architecture and construction named after T.K. Bassenov Department «Construction and building materials» 5B072900 – Civil engineering

APPROVED BY

Head of Department of «CandBM» D.Tech.Sc., Professor

 $3 4 \frac{-4}{(27)} - \frac{-4}{2020}$ K.

ASSIGNMENT

for the implementation of the diploma project

For student Sayed Muzamil Sadat

Theme: « Dormitory with a sports complex in Almaty »

Approved by order of the Rector of the University $N_{2}762$ -b from «27» 01 2020 y. The deadline for completion is «31» May 2020 y.

Initial submissions of the diploma project: _construction district - Almaty, Production The structural scheme of the building - frame, constant rigidity in height provided, columns, beams are fully cast, roof slabs are ready made of reinforced concrete. List of issues to be considered in the diploma project:

1 Architectural and construction department: characteristics of the construction area; threedimensional planning decisions; architectural and design solutions; outer wall thermal engineering accounting; engineering equipment of the building;

2 Computational and constructive section: calculation of loads and creation of the calculation scheme, calculation of the board and its calculation of reinforced concrete elements based on the results and their purpose

3 Technology and organization of construction production and labor protection: land determination of the volume of underground and surface works; by calculation pump trucks necessary number determine; tower taps selection; determination of the number of concrete trucks; surface reinforced concrete of the building construction of technologic structures installation; object design of constructionmaster plan; safety and productionSanitation;

4. Department of Construction Economics: local and object preparation of estimates,5. Safety of life and labor protection

List of drawing materials (mandatory drawings must be specified):

1 Facade of the building, sections, joints, specifications, plans - 4 sheets;

2 Drawing, specification of the column - 2 sheets;

3 Calendar plan of construction production, general construction plan, - 2 sheets Recommended literature:

1. SNIP 2 .04-01-2010 Construction climatology, Almaty, 2011;

2. SNiP RK 2.04-03-2002 Construction heat engineering, Construction

3 Committee on MEIT RK. - Astana, 2010

			preparat	ion of thesis (project	t)	
Sections			33%	66%	100%		Примечание
Predesign a	analys	is					
Architectur	al and	1	18.02.2020г				
constructio	n		01.03.2020г.				
Settlement				18.03.2020г	-		
constructiv	e		19	29.03.20 20г.			
Technology	y and						
organizatio	n of				03.04.	2020г	
constructio	n				19.04.	2020г.	
production	and la	abor					
protection 1	Econd	mic					
Anti-plagia	rism,	norm	19.04.2020г	29.04.2020г.			
control, pre	e-defe	nse					
Defence			01.06.2020г	06.06.2020г.			

SCHEDULE reparation of thesis (project)

Signatures

consultants and the normative controller for the completed diploma work (project) with an indication of the sections of work (project) related to them

T J J			
Name of sections	Consultants, I.O.F.	date of signing	Signature
	(academic degree, rank)		
Architectural	Manizha Pakteen	25.05.2020	\wedge
building		25.05.2020	Our I
Settlement and constructive	Manizha Pakteen	25.05.2020	(Aur
Technology and	Manizha Pakteen		
organization of construction		25.05.2020	- Olur
production			
Economic section	Manizha Pakteen	25.05.2020	- Au
Safety and labor protection	Manizha Pakteen	25.05.2020	
Norm controller	Kozyukova.N.V	25.05.2020	fund

Supervisor

Manizha Pakteen

Q

The task was accepted by the student

Sayed Muzamil Sadat

Date

«____»____2020 y.

АҢДАТПА

Жұмыстың тақырыбы: Диссертация тақырыбы - «Алматы қаласындағы спорт кешені бар жатақхана».

Әкімшілік ғимарат Алматы қаласының Сәтбаев және Сейфулин көшелерінің қиылысында орналасқан, ғимарат қаңқасы қатты шойыннан жасалған. тон конструкцияларынан тұрады. Жоба барысында қабылданған барлық шешімдер құрылыс нормаларына сәйкес алынды. Алматы сейсмикалық жағдайға байланысты сейсмикалық қауіпті аймақ. Дипломдық жоба бөлімдер мен суреттерден тұрады. Etabs Жерасты жұмыстары бағдарламасынан қосымша ақпарат 🖉

Есептеу, смета нәтижелері «Қосымшалар» бөлімінде көрсетілген. Жоба салыстырмалы түрде тиімді.

АННОТАЦИЯ

Тема дипломной работы «Общежитие со спортивным комплексом в Алматы».

Административное здание расположено в Алматы на пересечении улиц Сатбаева и Сефулина. Здание состоит из каркасных монолитных желейных бетонных конструкций. Все принятые в ходе проекта резолюции приняты с соблюдением строительных норм. Город Алматы, являющийся сейсмической зоной, обучен в сейсмических условиях.

Дипломный проект состоит из разделов и рисунков. Дополнительная информация, полученная из программы «Этабс», расчет подземных работ, результаты сметы указаны в разделе «Заявки». Проект разработан экономически выгодными сторонами.

ABSTRACT

The theme of thesis "Dormitory with a sports complex in Almaty ".

The administrative building is located in Almaty at the intersection of Satbayev and Sefulin streets. The building consists of a monolithic reinforced frame concrete structures. All decisions made in the course of the project were made in in accordance with the construction standards. The city of Almaty, being a seismic zone, is considered in seismic conditions.

Diploma project consists of 2 main sections and 4drawings. Additional information obtained from the program etabs.

CONTENT

Introduction	7
1 Architectural part	8
1.1 Basic information about the project	9
1.2 Natural and climatic information	9
1.3 Volumetric and planning solutions	12
1.4 Architectural and design solutions	13
1.5 Constructive solutions of the object	13
1.6 Thermal calculations	14
1.7 Anti-seismic activities 🎽 🍮 🐴	15
2 Structural part	16
2.1 Load collection	16
2.2 Design of columns	16
2.3 Design of beams	21
3 Technological part	24
3.1 Determining scope of work	24
3.2 Determining the scope of earthworks	27
3.3 for Construction machinery earthworks	28
3.4 Selection of trucks	28
3.5 Selection of the assembly crane	29
3.6 Development of the technological scheme of excavator passage	31
4 Economic part	37
4.1 Estimates	37
4.2 Algorithm for creating local estimates	38
4.3 Object estimate	38
4.4 Economic requirements and indicators	39
4.5 Labor protection	40
Conclusion	41
References	42

INTRODUCTION

They say that student years are the brightest and most saturated period in the life of every person. Of course, this is primarily due to the carelessness and freedom of young people who have just escaped from under the parent wing.

A dormitory is a place of temporary residence for visiting students and pupils during their studies, seasonal workers during work, service or which has become permanent for employees of the institution. Accordingly, it is necessary to distinguish between student and work hostels. Dormitory accommodation is provided at the rate of at least six square meters of living space per person. According to this standard, several people can live in one room. The level of comfort in a hostel is usually quite low.

In Almaty, construction companies and contractors are not interested in the construction of hostels due to the low coefficient of subsidies. It is beneficial for them to build residential complexes, rather than educational institutions and hostels. For the southern capital, this coefficient needs to be increased, in addition, 22 land plots have been allocated for the construction of hostels in the city.

The aim of the thesis is to build a comfortable multi-bed dormitory with a sports complex, so that students cannot spend on useless things in their free time, but spend on sports and maintain a healthy lifestyle.

1 Architectural part

1.1 Basic information about the project

The diploma project is developed on the "Construction of a dormitory with a sports complex.

Raspaud false at: Almaty city , at the intersection of Sefulin and Satbayev streets ." Building characteristic:

The territory allocated for the development project of the residential complex is currently free from development.

Entrances to the courtyard of the designed hostel are organized on the 1 hand, from the southern part of the site from Sefulin on the local road.

Dormitories of 18 floors and a sports complex with 2 floors with access to secondary streets with infrastructure, as well as general green spaces, are planned on the territory.

The complex includes the construction of a multi-storey hostel in the amount of 1 buildings and a sports complex.

For a conditional mark of the level of the clean floor of the first floor of residential blocks is accepted, which corresponds to the absolute mark of 975.60

The graduation project is designed for the following construction conditions:

•humidity zone - normal;

• climatic region - II: the climate is temperate continental;

• snow area - II, the normative value of the weight of the snow cover is 0.70 kPa; wind region - I, standard value of wind pressure - 0.23 kPa;

•climatic parameters of the cold season : air temperature of the coldest day: - 30° C; air

•temperature of the coldest five-day period: -27°C; the construction area is seismic hazard, magnitude is 9-10 points; the construction site is located in the residential and administrative buildings zone, the

• land plot relief is calm.

1.2 Natural and climatic and engineering-geological conditions

The characteristic features of the climate of this territory are: an abundance of sunlight and heat, continentality, hot, long summers, relatively cold with alternating thaws and cold snap winters, large annual and daily amplitudes of fluctuations in air temperature, air dryness and changes in climatic characteristics with the height of the terrain.

I	II	III	IV	v	VI	VII	VIII	IX	Х	XI	XII	Год
-16,8	-16,5	-10,1	+3,0	+12,7	+18,2	+20,4	+17,8	+11,5	+2,6	-7,0	-14,0	1,8

Figure 1- Monthly and annual air temperatures

As can be seen from table 3.1, the average monthly temperature of the coldest month of the year of January is minus 16.8 degrees of frost, and the warmest of July is +20.4 degrees of heat.

In separate, very severe winters, the temperature can drop to 29-32 degrees (absolute minimum), but the probability of such a temperature is no more than 5%.

On hot days, the temperature can rise to 39-40 degrees Celsius. The estimated air temperature of the coldest five-day period is 25 degrees, the estimated air temperature of the hottest five-day period is 28 degrees, the average duration of the heating season is 184 days.

Atmospheric precipitation

The average amount of precipitation falling over the year is 330-370 mm.

Rainfall is unevenly distributed over the seasons of the year; the greatest amount of precipitation falls in the warm season (May-September) - 238 mm. The average annual snow depth is 22 mm; the water supply in the snow is 67 mm.

According to SNiP 2.01.07-85 * snow area by weight of snow cover - III.

Wind

The study area is characterized by frequent winds blowing mainly in the southwesterly direction. The average annual wind speed is 5.0-5.6 m / s. Wind roses are shown in Figure 2.

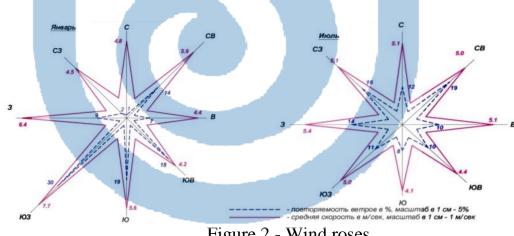


Figure 2 - Wind roses

Soil freezing depth

The standard freezing depth according to SNiPu "Construction Climatology" is 205 cm. The average depth of penetration of "0" into the soil is 234 cm (the greatest penetration is usually in March).

By analogy with data from other regions, the possible penetration of zero into the depth, with little snow, can reach 350 cm in loams (SNiP RK 5.01-01-2002, SNiP RK 2.04-01-2010)

Air humidity

The smallest value of absolute humidity in January-February (1.6-1.7 m), the highest - in July (12.7 m).

The lowest relative humidity is in the summer months (40-45%), the highest in winter.

The average annual relative humidity is 86%. The highest moisture deficit is observed in June-July (12.2-12.4 m). Low in December-February (0.3-0.4 m). The average annual humidity is 4.8 m.

1.3 General plan. Landscaping

The territory allocated for the project of building a hostel with a sports complex is located in the city of Almaty on the street. Askarov in the Bostandyk district.

Currently, most of the territory is not developed with the developed foundation pit.

Entrances to the courtyard of the hostel are organized from 2 sides from the northern and southern parts of the plot from secondary streets.

The general plan was developed in accordance with the urban planning situation and the required orientation of the premises, the master plan for the development of industrial areas, taking into account the landscaping and landscaping in accordance with the requirements of SN RK 3.0207.2014 "Public buildings and structures" and SP RK 3.01-101-2013 "Urban planning. The improvement and landscaping of the site provided for by the project reduces the general dust content and eliminates local foci of dust.

Table 1 - Technical and economic indicators for the master plan

Name	Index
Land area	1.8 ha
Built-up area	9046.4 m^2
Building factor	0.49
Landscaping area	4392.6 m ²
Gardening rate	0.238
Hard surface	5023 m^2
The utilization of the territory	0.272

The area around the building is landscaped and landscaped. There are paved access roads to the building.

1.4 Space-planning solution

Volumetric - planning decision was made in accordance with the location of the entrances, the functional and technological organization of workers. The level of the clean floor of the first floor is taken as a conventional mark of 0,000. On the general plan, this level corresponds to the absolute mark. The highest elevation of the building is +55.8 m.

The building of the sports complex was designed with two floors, without a basement and ground floor. It includes the following set of floors:

The 1st floor is equipped with a dining room, a sports area and fitness rooms. In accordance with the functional purpose of the premises, the height of the first floor is 6.3 m.

- 2nd floor floor plan is the same. At the same time, the second floor has a height of 3.3m

All rooms are lit with natural light according to the requirements of SP RK 2.04-104-2012

* "Natural and artificial lighting." According to this document, in accordance with the requirements for lighting in the building, psycho-emotional comfort should be provided. At the same time, low color discrimination requirements are imposed.

1.5 Constructive solutions of the object

The graduation project of the hostel with a sports complex was developed in accordance with SN RK 5.01.-02-2013, SNiP 2.01.19-2004, SNiP RK 2.03-30-2017.

The base plate is 600 mm thick, reinforced with reinforcement with a diameter of 14 mm of class A500C.

Slab and cover 200mm thick.

Monolithic reinforced concrete columns 400x400 mm thick.

Walls and partitions monolithic and reinforced concrete 200mm.

Monolithic reinforced concrete stairs 200 mm thick.

Monolithic reinforced concrete parapet 150 mm thick.

To reinforce all reinforced concrete structures, A500C class reinforcement was used.

For a conditional mark of 0.000, the floor of the first floor is taken.

Installation of monolithic structures is carried out in accordance with SNiP 5.03.37-2005.

Apply anti-corrosion coating to all embedded parts and connecting elements of reinforced concrete structures by galvanizing with zinc plating.

Work on anticorrosion protection shall be carried out in accordance with SNiP RK 2.0119-

2004 "Protection of building structures from corrosion. Rules for the production and acceptance of work "

Perform welding work in accordance with the instructions of SN 393-78 and GOST 526480.

Welding of embedded parts is carried out with electrodes E-42, satisfying the requirements of GOST 9467-75.

In the process of construction and installation work, it is necessary to develop measures for fire protection and for monitoring the implementation of fire safety rules.

Horizontal waterproofing is made of cement mortar M100 with sealing additives.

1.6 Thermomechanical calculation of the outer wall

According to the joint venture of the Republic of Kazakhstan 2.04-01-2017 "Construction Climatology" [p. 7-10] and the joint venture of the Republic of Kazakhstan 2.04-107-2013

"Construction Heat Engineering". [p.14-16] "Construction heat engineering" it is necessary to determine the thickness of the insulation for the outer wall.

We determine the value of the degree days of the heating period:

$$\Gamma CO\Pi = (t_B - t_O T_{T_{e}})^* z_O T_{T_{e}}$$
(1)

where tv = 21 $^{\circ}$ C is the temperature of internal air, $^{\circ}$ C;

 $t_{ornep} = 1,7$ °C – - average temperature of the heating period;

 $z_{ornep} = 160$ cyr. - the duration of the heating period;

ГСОП=(21-1,7)*160=3088 ℃*day

The required heat transfer resistance of enclosing structures that meet sanitaryhygienic and comfortable conditions is:

$$R^{TP}_{0} = 2,45 \text{ °C/BT}$$

Table 2 - The composition of the outer wall

Name of material	Υ,kg/m	2 λ, W / m	δ, m	$R = \delta / \lambda, n 2$
	0 3	С		m °C / W
Cement-sand mortar	1800	0.76	0,03	0,039
Extruded expanded	40	0,03	0.06	2
polystyrene				
Cellular concrete	600	0.26	0.30	1.15
Cement-sand mortar	1800	0.76	0,03	0,039

The heat transfer resistance of the building envelope should be determined by the formula 2.2:

$$1 \quad \delta \underline{1} \quad \delta \underline{2} \quad \delta \underline{3} \quad \delta \underline{4} \quad \underline{1}$$

R0 = $\alpha \underline{B} + \gamma \underline{1} + \gamma \underline{2} + \gamma \underline{3} + \gamma \underline{4} + \alpha \underline{H}$ (2)

$$R_0 = 3,38 \text{ m}^2 * \circ \frac{C}{2} \ge R_0^{TP} = 2,45_{BT} \text{ m}^2 * C/BT$$

The condition is satisfied. We take the thickness of the insulation 60 mm.

1.7 Ant seismic activities

The seismic hazard of the construction zones should be determined using a map of seismic generating zones of the territory of Kazakhstan, a set of maps of the general seismic zoning of the territory of the Republic of Kazakhstan, or according to the list of settlements located in seismic zones.

List of settlements located in the seismic zones of the Republic

Kazakhstan, with an indication of seismic hazard for them in points and in accelerations, is given in the mandatory Appendix B.

Our hotel is located in a seismic zone, therefore antiseismic measures are necessary. Seismicity of the work area according to SP 2.03-30-2017 9 points.

The category of soils by seismic properties is II (second). The adjusted value of seismicity should be taken equal to 9 (nine) points.

Since the hotel has a non-symmetrical shape, we divide it into separate blocks. Between the blocks we perform a deformation seam.

Antiseismic seams should be performed by erecting paired walls, paired frames or frames and walls.

The width of the anti-seismic seam between buildings or compartments should be taken no less than the total value of their calculated horizontal displacements at the appropriate level, calculated using expression (7.31).

With a building height of up to 5 m, the width of the anti-seismic seam, regardless of the calculation results, should be at least 30 mm. The width of the anti-seismic seam for buildings of higher height should be increased by 20 mm for every 5 m of height.

Antiseismic seams separating the foundations (except for pile foundations) may be taken with a width of 10 mm.

Structures of antiseismic seams and their filling should not impede the mutual movements of adjacent compartments during earthquakes.

In buildings located on construction sites with a seismicity of 8 points or more, it is not allowed to provide the possibility of mutual movements of adjacent compartments due to the movement of span structures freely lying on the structures of adjacent compartments.

2 Structural part

2.1 Collection of loads

Total nodal loads on the main circuit: Load 1 PX = 0 PY = 0 PZ = 5351.02 PUX = 7.98887e-014 PUY = -6.06459e-014 PUZ = 0Load 2 PX = 0 PY = 0 PZ = 5248 PUX = 0 PUY = 0 PUZ = 0 Load 3 PX = 0 PY = 0 PZ = 4025.68 PUX = 9.91969e-014 PUY = -8.10779e-014 PUZ = 0 Load 4 PX = 0 PY = 0 PZ = 399.36 PUX = -4.96131e-015 PUY = 0 PUZ = 0 Load 5 PX = 0 PY = 0 PZ = 2415.41 PUX = 5.82539e-014 PUY = -5.06313e-014 PUZ = 0Load 6 PX = 0 PY = 0 PZ = 3220.54 PUX = 8.09195e-014 PUY = -6.43539e-014 PUY = -6.4359e-014 PUZ = 0Load 7 PX = 0 PY = 0 PZ = 259.2 PUX = 0 PUY = 0 PUZ = 0Calculation completed successfully Elapsed time $= 2 \min$ The calculation results in LIRA-CAD are given in Appendix A

2.2 Design of column

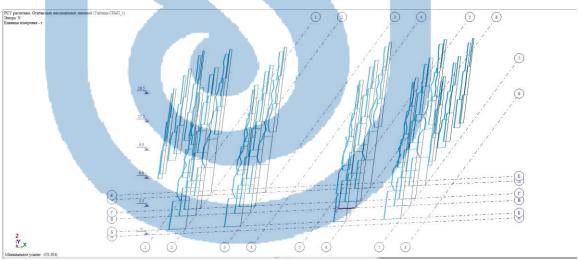
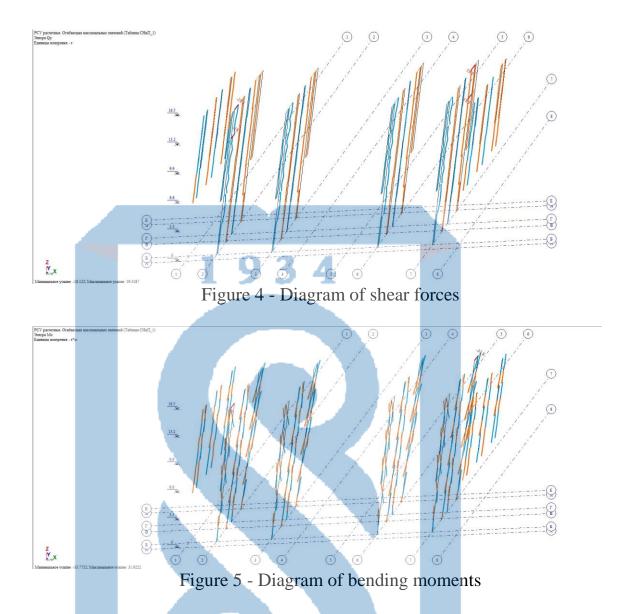



Figure 3 - Diagram of longitudinal forces

Initial data

Section column 500x500mm. For calculation - heavy concrete B25; $\gamma b2 = 0.9$; reinforcement class A500C according to the results of calculations performed in the LIRA program; Rb = 14.5MPa; Rs = $\neg\neg$ 270MPa; Rsc = 270 MPa; Eb = 3 * 104MPa; Es = 2 * 105 MPa.

Protective layer of concrete a = a' = 30mm. When calculating the strength of the column, it is considered as an eccentrically compressed element. Constant load forces: Estimated Column Length:

$$l_0 = 0.7h = 0.73 = 2.1m$$

Column working height:

 $h_0 = h-a = 600-40 = 560 mm$

Find the values of the moments of external forces relative to the least compressed (stretched reinforcement)

M1 = M + 0.5N (h0-a') = 671.1 + 0.52272.7 (0.56-0.04) = 1262 kN.mFor continuous use

 $Mu = M1 + 0.5N (h0-a') = 452.7 + 0.5 \cdot 2113.9 (0.56-0.04) = 1002.3 \text{ kN.m}$

M_u Section inertia radius:

 $I = \sqrt{(h^2/12)} = \sqrt{([60])^2 + 2/12} = 17.32 \text{ cm}$

Due to the fact that $1_0 / i = 210 / 17.32 = 12.12 < 14$, the deflection of the column can be ignored.

The conditional critical force N_crc is determined by the formula: [17, p. 30, f.20]

Check the condition $\delta e > \delta$ (e, min)

 $\delta_{-}(e, \min) = 0.5 - (0.011_{-}0) / h - 0.01Rb = e_{-}0 / h = 295.3 / 600 = 0.49 > \delta_{-}(e, \min) = 0.5 - (0.011_{-}0) / h - 0.01Rb = 0.5 - (0.01 * 2100) / 600 - 0.01 * 13.05 = 0.334$ We take $\delta_{-} e = 0.49$

 $\alpha = E_s / E_b = (2 \cdot [10] \land 5) / (2,05 \cdot [10] \land 4) = 6.67 [17, p. 39]$ Section inertia moment for concrete

 $J = (bh^{3}) / 12 (2.27) = [50 \cdot 60] ^{3}/12 = 9 \cdot [10] ^{(5)} [cm] ^{4}$ We set the coefficient of reinforcement in the first approximation $\mu = 2 \cdot 0.005$

$$= 0.01.$$

The moment of inertia of the armature section relative to the center of gravity of the concrete. sections:

$$J_s = \mu bh_0 (0.5-a)^2 = 0.01 \cdot 50 \cdot 56 (0.5 \cdot 50-4)^2 = 0.12 \cdot [[10]]^5 [[cm]]^4;$$

Conditional critical force:

 $N_cr = (6.4 \cdot 3 \cdot [10] \wedge 4) / (2100) \wedge 2 [(9 * [10] \wedge 3) / 1.79 (0.11 / (0.1 + 0.49) + 0.1) + 6.67 \cdot 0.12 \cdot [10] \wedge 9] = 34847 \text{ kN}.$

The coefficient of influence of the deflection on the eccentricity:

 $\eta = 1 / (1-N / N_cr) = 1 / (1-2272.7 / 34847) = 1.07; [17, p. 30, f. 19]$ The eccentricity, taking into account the deflection, is equal to:

 $e = e_0 \eta + 0.5 (h-a) = 295.3 \cdot 1.07 + 0.5 \cdot 560 = 595.97 mm.$ Concrete Compressed Area Height:

 $X = N / (Rb * b) = (2272.3 * [[10]] ^ 3) / (13.05 * 500) = 348.2mm$ The limited relative height adopted for the compressed zone of concrete: $\xi_R = \omega / (1 + Rs / 500 (1-\omega / 1,1)) = 0.75 / (1 + 270/500 (1-0.75 / 1,1)) = 1.5,$ [17, p. 31, f.25]

where $\omega = \alpha - 0,008 \cdot \text{Rb} [17, \text{ p. } 31, \text{ form. } 26]$ - characteristic of the compressed zone of concrete $\omega = 0.85 - 0.008 \cdot \text{Rb} = 0.85 - 0.008 \cdot 13.05 = 0.75$

Reinforcement is defined in accordance with paragraph 3.62:

 $\alpha_n = N / (R_b bh_0) = (2272.3 * [10] ^3) / (13.05 \cdot 500 \cdot 560) = 0.62$

$$\alpha_{m1} = (N * e) / (R_{b} b [[n_0]] * 2) = (22/2.3 * [[10]] * 3 * 595.97) /$$

 $(13.05 \cdot 500 \cdot [560] ^2) = 0.66 < \xi_R = 1.5\delta^{,} = a^{,} / h_0 (2.35) \delta^{,} = 40/560 = = 0.07;$

As = As1 is determined by the formula:

As = As1 = (R_b bh_0) / Rs * (α m1- α n (1- α n / 2)) / (1- δ ') As = As1 = (13.05 * 500 * 560) / 270 * (0.53-0.62 (1-0.62 / 2)) / (1-0.07) = 1487.2 mm Reinforcement percentage

 $\mu = (As + As1) / bh = (2 * 1487.2) / (600 * 500) = 0.01 \ge \mu = 0.01$ We specify the percentage $\mu = (0.01 + 0.01)/2=0.01$ J s = μ bh 0 (0.5h-a) ^ 2 = 0.01 * 50 * 56 (0.5 * 60-3) 2 = 0.19 * 105cm4= $= (6.4 \cdot 3 \cdot [10] ^{+} 4) / (2100) ^{2} [(2.13 * [10] ^{+} 3) / 1.79 (0.11 / (0.1 + 10))]$ $(0.49) + (0, 1) + (6.67) \cdot (0.19) \cdot x [[10]] ^ 9] = 55174 \text{kN}$ The coefficient $\eta = 1 / (1 - N / N_cr) = 1 / (1 - 2272.7 / 55174) = 1.04$ [17, p. 30,

f.19]

 $e = e \ 0 \ \eta + 0.5 \ (h-a) = 295.3 \ * \ 1.04 \ + \ 0.5 \ * \ 560 = 587.1 \text{mm}$ $\alpha_m 1 = (N * e) / (R_b bh_0) = (2272.7 * [10] ^3 * 587.1) / (13.05 \cdot 500)$ ^ 2) =0.65 As = As1 = (R b bh 0) / Rs * $(\alpha m 1 - \alpha n (1 - \alpha n / 2)) / (1 - \delta') = (13.05 * 500)$ $(1.0.62 \times 20) \times (0.65 \times 0.62 \times 10.62 \times 2)) \times (1.0.07) = 3233 \text{ mm}^2$ We accept A500C reinforcement As + As1 = 6466 mm2 (8 \emptyset 32).

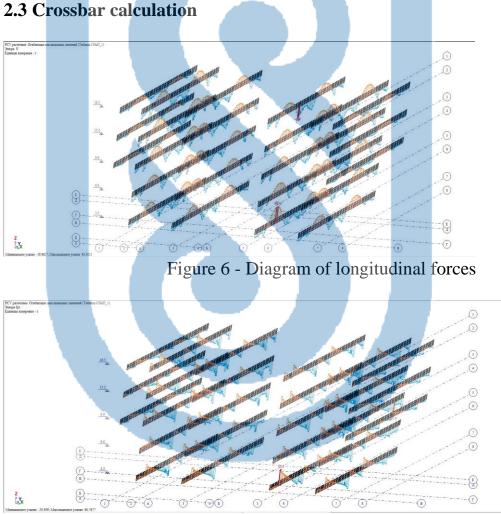


Figure 7 - Diagram of shear forces

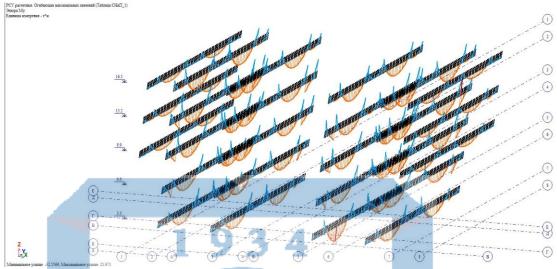


Figure 8 - Diagram of bending moments

Initial data:

The calculation of the crossbar is made according to the NTP RK 02-01-1.1-2011

The rectangular section taken for the column has dimensions b = 500 mm, h = 500 mm; c1 = 30 mm. Concrete of class C30 / 37 (fck = 30 MPa, $\gamma c = 1.5$, fcd = $\alpha cc \cdot fck/\gamma c =$

 $0.85 \cdot 30 / 1.5 = 17.0$ MPa, $\alpha ss = 0.85$). S500 class fittings (fyk = 500MPa, $fyd = fyk/\gamma s = 500 / 1.15 = 435$ MPa, Es = NTP RK 02-01-1.1-2011 45 20 · 104MPa).

<u>A</u> Determination of the cross-sectional area of the reinforcement

Bend. moment $MEd = 225.53 \text{ kN} \cdot \text{m}$ and longitudinal force NEd = -630.07 kN Need: determine the cross-sectional area of the longitudinal reinforcement. Payment. d = h - c1 = 500-30 = 470 mm = 47 cm.

 $225.53 / (-630.07) \cdot 0.50 = 1.17 < 3.5 \rightarrow$ calculation using the diagram a - v. We find *aEds* and *vEd* by the formulas:

a_Eds = $225.53 * [10] ^{6} (17.0 \cdot 00 \cdot [470] ^{2}) = 0.12$ and (2.3) v Ed = $-630070 / 17.0 \cdot 500 \cdot 470 = -0.158$.

The required area of longitudinal reinforcement according to Fig. B.2 is 3aB1 / h =

30/500 = 0.06 (Appendix B) $\rightarrow \omega tot$.

A_ (s, tot) = $0.38 \cdot 500 \cdot 500/435 / 17.0 = 3712.6$ mm2. As = 3712.6 / 2 = 1846.3 mm2.

Accepted: $3\emptyset 28 + 3\emptyset 28 \ S500 \ (As1 + As2 = 1885 + 1885 = 3770 \ mm2)$.

<u>B</u> Calculation of checking the width of the opening of cracks normal to the longitudinal axis of the element.

Working section height

(2.6) d = 500 - 30 - 8 - 20/2 = 452 mm. (2.7) $\rho = 1885/500 \cdot 452 = 0.0083$ (0.9%). [18, p. 126] Using the data from table 8.3, we check the width of the crack openings for rectangular sections reinforced with reinforcement of class St500 at $0.5\% \le \rho \le 1.0\%$ of the internal shoulder. power pairs, calculated:

 $z = 0.85 d = 0.85 \cdot 452 = 384.2$ mm. Stresses in tensile reinforcement:

 $(2.8) \sigma_s = 225.53 * 106 * 1885 \cdot 384.2 = 311.4 \text{ N} / \text{mm2}.$

[18, p. 112, f8.13]

According to table 8.3, dmax = 12 mm at $\sigma s = 311.4 \text{ MPa}$ and wk, lim = 0.4 mm.

Accepted diameter $\emptyset = 20 \text{ mm} > \emptyset max = 6 \text{ mm}$, i.e. it is necessary to check the width of the crack opening with a calculated method.

Since the moment dEd is designed for a quasi-constant combination of loads, when checking the crack opening width, we use the effective elastic modulus:

The previous value of the creep coefficient $\varphi(\infty, t0)$ is determined from the nomogram given in Fig. 6.1a. At $h0 = 2Ac / u = 2 \cdot 500 \cdot 500/2 (500 + 500) = 250$ mm and RH = 50% for t0 = 30 days. $\rightarrow \varphi(\infty, t0) = 2.8$.

Ec, eff =
$$30 \cdot [10] \wedge 3 / 1 + 2.8 = 7.9 \cdot [10] \wedge 3$$
.

The reduction coefficient ae = Es / Ec, eff = $20 \cdot 10/4 \ 7.9 \cdot 103 = 25.3$. Determination of the height of the compressed zone: [18, p. 127]

Substituting the values:

 $x \approx 160$ mm. Armature stresses: $\sigma_s = 225.53 \cdot [10] \wedge 6/1885 (452 - 160/3) = 300.11$ MPa. Estimated crack opening width according to the formula:

$$wk = sr, max (\varepsilon sm - \varepsilon cm), \tag{3}$$

where sr, max - max. the distance between the cracks, we find by the formula:

sr, max = $3.4 \cdot c + 0.425k1 \cdot k2 \cdot \emptyset / \rho eff$ = $3.4 \cdot 30 + 0.425 \cdot 0.8 \cdot 0.5$ 20 / 0.0314 = 210 mm.

atk1 = 0.8 - for profile periodicity rods; k2 = 0.5 - in bending;

kt = 0.4 - for a quasi-constant combination of loads.

 $\rho_{eff} = 1885/500 \cdot 120 = 0.0314.$

The value *ɛsm* - *ɛcm*

 $\varepsilon sm - \varepsilon cm = 300.11 - 0.4 (2.2 / 0.0314) (1 + 25.3 \cdot 0.0314) / / 20 \cdot [[10]] ^ 4 = 124.91* [[10]] ^ (-5) \ge 0.6 \cdot \sigma s Es = 0.6 \cdot 150.06 \cdot [[10]] ^ (-5) = 90 \cdot [[10]] ^ (-5),$

the condition is

 $wk = sr, max (\varepsilon sm - \varepsilon cm) = 210 \cdot 124.9 \cdot [[10]] \wedge (-5) = 0.262 < wlim = 0.4$ mm.

Check for the width of the crack opening is performed

3 Department of Construction Production Technology

3.1 Determining the scope of work

The calculation of the volume of work begins with the determination of the volume of concrete, reinforcement consumption and formwork according to structural drawings. The area of the published surface and the volume of concrete are calculated according to the geometric dimensions of the structures. The results are tabulated. The required number of prefabricated elements is also determined: universal prefabricated panels, support rafters, telescopic racks, trusses, wooden plywood beams, laminated plywood sheets. The number of elements is included in Table 3.

Mark of e	Mark of element		concret	Volume of concrete to be laid, m3		el ption, t	on, t Area of the m2	
			One item	all	For one element	all	For on element	all
			Solic	l ceiling	S			
ПМ	1	1	365,7	365,7	29,2	29,2	1828,6	1828,6
ПМ	2	1	240,2	240,2	19,2	19,2	1201,3	1201,3
	Solid Column							
¥M	1	58	1,08	62,64	1,40	81,4	7,2	417,6
¥M	2	38	0,48	18,24	0,62	23,7	4,8	182,4
			diap	hagrams				
Д1		4	4,1	16,4	5,23	20,92	42,45	169,8
Д2		2	3,67	7,34	4,78	9,56	37,17	74,34
A set of dia	phragm	is: 6		23,74		30,48		244,14
Lift shaft								
Lift sh	afts	1	12,6	12,6	9,36	9,36	130,32	130,32
			sta	aircase				
stairca	ase	1	9,17	9,17	8,49	8,49	92,88	92,88

 Table 3 - Determining the scope of work

Before starting the construction of the frame of the prefabricated building, it is necessary to equip the warehouses near the facility (for reinforcement products, formwork), to provide places for receiving concrete mix.

To build the frame of a prefabricated building, we use a universal prefabricated form. Transfer of molds is performed by a crane. Delivery of all reinforcement products is carried out by crane. Transportation of the concrete mix is carried out by auto-concrete mixers from the nearest mortar - concrete mix, which allows to maintain the uniformity and the required mobility of the concrete mix.

The following schemes of supply of concrete mixture to the structure can be:

with cranes in the culverts; with auto-concrete pumps.

Disassembly of molds is carried out manually. The box is grounded by a crane. On site, the enclosure is cleaned, lubricated, inspected and then used in the next cycle.

Devices for concrete works are accepted depending on the intensity of concreting, which is determined based on the time norm for concrete workers to lay the concrete mix.

Table 4 - Determining the number of template elements								
elemets	Number of elements	Mass of 1 element	Mass of all elements					
ne mold 3000	42	0,114	4,788					
e mold 3000	37	0,09	3,33					
e the stand	60	0,035	2,1					
supports	465	0,018	8,37					
oga	465	0,006	2,79					
he beam	280	0,002	0,56					
ral:			21,82					
	elemets ne mold 3000 e mold 3000 e the stand supports oga ne beam	elemetsNumber of elementsne mold42300037e mold37300060supports465oga465ne beam280	elemetsNumber of elementsMass of 1 elementne mold420,1143000370,09e mold370,09000600,035supports4650,018oga4650,006ne beam2800,002					

Table 4 - Determining the number of template elements

Option 1

An additional tower crane is used to lower the reinforcement, lower the formwork and further supply the reinforcement products, formwork and necessary construction products and equipment.

Delivery of concrete mix to the construction site is carried out according to the "crane-shovel" scheme. When the crane is delivered, the concrete mix is unloaded from the truck to the rotary shafts, the capacity of which must be doubled by the intensity of the concrete mixing and the capacity of the truck body transporting the concrete mix.

Option 2

An additional tower crane is used to lower the reinforcement, lower the formwork and further supply the reinforcement products, formwork and necessary construction products and equipment. The concrete mixture is delivered to the place of laying by means of a concrete pump.

Select an additional tap for option 1

The main technological parameters of the crane are: hook flight L m, hook lifting height H m, crane load capacity Q, etc. To select a crane, we calculate the above characteristics. Hook lift height:

$$H_{K} = H0 + H\delta + H_{\vartheta} + H_{CTP}$$
(4)

where H0 = 55.8 m - the height of the building; Nb = 0.5 m - the height of the hole for safe work;

Ne = 3.16 m is the height of the element, in this case the turning angle height;

Hctp = 3.3 m - height of ropes. Nk = 55.8 + 0.5 + 3.16 + 3.3 = 62.76 m. Light:

Hook flight:

$$\mathbf{L} = \mathbf{L}\mathbf{\Pi} + \mathbf{L}\mathbf{\delta} + \mathbf{L}\mathbf{o}\mathbf{-0.9} \,\mathbf{m},\tag{5}$$

where Ln = 62.7 m - the distance from the edge of the foundation of the building to the farthest column.

 $L\delta = 1$ m - safety zone from the edge of the building foundation to the edge of the crane foundation.

Lo = 3.6 m is the distance from the edge of the crane foundation to the axis of the crane tower.

1.05 m is the distance from the axis of the crane tower to the edge of the crane tower. L = 62.7 + 1 + 3.6 - 1.05 = 66.25 m.

The mass of the rising element

The calculation is made on a bucket with concrete, because it has the largest mass.

We accept a rotary bucket with a capacity of 2 m3. Technical characteristics are given in Table 5.

Capacity, m3
2,0
800x600
Maxillary
0,9
3160
1232
1040

TT 11 /	D	• •	1 1	C .	1 . 1 .	
	Lator	mining 1	the number	of tomn	Into alamonto	
					late elements	
1 4010 0	20001			or comp	idee erementes	

$$Q = Q_{\delta} + Q_{\delta er} + Q_{crp}, \tag{6}$$

where Qb = 0.9 t - weight of the bucket,

Qbet = 2.2 * 2 = 4.4 t - weight of bucket concrete, Qstr = 0.06 t - weight of rope.

Q = 0.9 + 4.4 + 0.06 = 5.36 t.

As an additional crane we choose a COMEDILCT / B-8 crane with a hoist height of 62.3 m. The height of the tower can vary from 8.2 to 62.3 m. The crane support is a concrete foundation, to which the crane is attached with anchor bolts. The crane shaft rotates on a roller bearing with two turning mechanisms.

Choice of additional crane and concrete pump for option 2

Choosing a crane

For the second version of the work, we get a COMEDILCT / B-8 crane, ie the mass of the formwork and the mass of the reinforcement does not exceed the mass of the bucket with concrete, and the height of the formwork is less than the height of the bucket. Selection of concrete pump

To deliver concrete to the highest point of the building, a concrete pump with a concrete delivery height of at least 54 m is required. Its technical characteristics are given in Table 6.

Table 6 - Technical description BN - 80 concret	e pump
Indicator	The essence
Pump type	hydraulic piston
Productivity, m3 / hour	80
Feeding height, m	120
Transmission distance, m	520
Fuel consumption, 1 / h	21
Fuel tank capacity, 1	50
Volume of the receiving hopper, m3	0,6
Dimensions and chassis of the concrete pump mm:	
length	5500
width	1800
height	2300
weight, t	4,5
chassis type	pneumatic chassis
Concrete mix for concrete pump:	
fraction, mm	till 40
convenient branding	П2
movement of the mixture	9

Table 6 - Technical description BN - 80 concrete pump

Feasibility study of the options for the height of the transmission rate

Substantiation of the final version of the work on concreting the structure is carried out by technical and economic comparison of the considered options.

To compare the options, it is necessary to calculate for each version of the concrete work.

For the first and second options, the time and salary for concrete work are calculated. The results of the calculation of concrete works are given in Table 3.5.

Before performing the above calculation, we first determine the time norms and the assessment of the transfer of the concrete mixture to the structure with the concrete pump BN-80 and the discharge of the concrete mixture from the concrete mixer to the chassis and the receiving hopper of the concrete pump.

Feasibility study of concrete mix delivery options is carried out for the top layer, as the concrete mix "crane - chase" scheme

depends on the delivery time, and the rate of delivery of concrete mix by truck does not depend on the height of the building.

Calculation 1

Determining the time and price norm for unloading the concrete pump into the bucket and the receiving hopper of the concrete pump.

We accept concrete mixer 69363B.

The volume of the transported mixture is 5 m3.

KAMAZ-55111 base car.

Unloading time is 300 s.

The hourly rate for the driver is 0.79 tenge.

Time norm for unloading 100 m3 of concrete mix:

1 * 100 * 300 / (5 * 3600) = 1.67 mash / h.

Price: 0.79 * 1.67 = 1.32 tg

Determination of time and evaluation standards for the delivery of concrete mixture to the structure with a concrete pump BN-80.

The operational performance of the concrete pump is determined by the following formula:

$$Pe = Pt * K1 * K2 \tag{7}$$

where Pt = 80 m3 / h - technical capacity of the concrete pump, K1 = 0.5 - use of coefficient of technical performance performance

K2 = 0.65 - coefficient of reduction of concrete pump performance

Pe = 80 * 0.5 * 0.65 = 26 m3 / h

The concrete pump is serviced by a unit of three people:

- concrete pumping machine operator 1 person 4th category,
- locksmith 4 category 1 person,
- 1 person of concrete worker of 2 categories.

Time norm of 1 m3 of concrete mix:

- for workers: 1 * 2/26 = 0.077 man-hours, - for the driver: 1 * 1/26 = 0.0385 man-hours, The assessment is:

- for workers: 0.64 * 0.077 = 0.0493 tenge, - for the driver: 0.79 * 0.0385 = 0.0304 tenge.

We determine the cost of work for each option;

$$Ci = \Pi 3 + HP \tag{8}$$

where $\Pi 3 = (3pab + C_{M-4} * N_{M-4} + C_{\Pi\Pi}) * U$,

Zrab - the wages of construction workers are defined in the table of this explanatory note;

Sm-h - car-hour price, rubles,

Nm-h - the number of machine hours of machine work is defined in Table 3.6 of the explanatory note,

SPP - the cost of installing the foundation of an additional tower crane, I = 148,629 - the average conversion factor from the base price level in 1984 to the current price level in 2012;

 $1 \quad 9 \quad HP = K * (3pa\delta + 3mam)$ (9)

where K = 1.12 - the amount of overhead costs (as a percentage) from the payroll of workers - builders and mechanics.

Zmash - the salary of drivers is defined in Table 3.6 of this explanatory note.

Option 1

An additional tower crane COMEDIL CTT / B-8 is used to deliver the concrete mix to the laying site. Cm-h = 8.47 tg;

Nм-ч = 29,41mash - hours;

Zrab = 194.75 tg;

Zmash = 26.82 tenge; And = 148,629.

The cost of installing the foundation of the additional tower crane is not taken into account, as the tower crane will be used in the installation before concreting.

PZ = (194.75 + 8.47 * 29.41) * 148.629 = 65 969.4 tg;

HP = 1.12 * (194.75 + 29.41) * 148.629 = 37 314.7 tg; Ci = 65 969.4 + 37

314.7 = 103 284.1 tg.

Option 2

BN-80 concrete pump is used to deliver the concrete mixture to the place of laying.

Cm-h = 17.36 tg;

Nm-h = 7.65 mash - hours;

Zrab = 142.52 tg;

Zmash = 6.04 tenge; And = 148,629.

The cost of installing the foundation of the additional tower crane is not taken into account, as the tower crane will be used in the installation before concreting. II3 = $(142,52 + 17.36 * 7,65) * 148,629 = 34\ 899,8\ \text{TF}$; HP = $1.12 * (142.52 + 6.04) * 148.629 = 34\ 723\ \text{tg}$; Ci = $34\ 899.8 + 34\ 723 = 69\ 622.8\ \text{tg}$.

Table 7 - Feasibility study of options

Name of indicators	UNIT		The value	of indicator
			by options	
			Option 1	Option 1
Scope of work	- sa	mash	29,41	7,65
Labor intensity		high	244,31	200,74
Duration of shift installation		shift	15,26	12,56
Cost (prices for 2012)		tenge	103284,1	69 622,8

3.1 Basically, as a result of the data obtained, we accept the feasibility study for further development of Option 1 (crane-sink), as the crane is required to perform reinforcement, formwork, masonry and other work.

3.2 Selection of vehicles

We receive a 69363V truck concrete mixer to transport the concrete mix from the concrete plant to the construction site.

The volume of the transported mixture is 5 m3.

KAMAZ-55111 base car.

Unloading time is 300 s.

The performance of the vehicle in the method of portion delivery of the mixture is determined by the following formula:

$$\Pi \mathbf{T} \mathbf{p} = \mathbf{Q} \mathbf{T} \mathbf{p} * \mathbf{t} \mathbf{c} \mathbf{M} * \mathbf{\kappa} \mathbf{B} \mathbf{p} * 60 / \mathbf{t} \mathbf{u}$$
(10)

where Qtr = 5 m3 - portion volume of concrete mix transported in one flight; tcm = 8 hours - shift duration;

kvr = 0.9 - working time utilization factor; $tII = t3 + t\Gamma\Pi + tB + tIII + to$ general transportation of concrete mix cycle duration; t3 = 8 min - loading time of the vehicle at the concrete plant; $t\Gamma\Pi = 20 \text{ min}$ - travel by truck instead of laying the mixture from the factory time; tB = 8 min - time of unloading of concrete mix; tpp = 20 min - idle time of the vehicle to the concrete plant; to = 5 min - cleaning, washing and service time.

Ptr = $5 \ 8 \ 60 \ 0.9 \ / \ (8 + 20 + 8 + 20 + 5) = 35$.4 m3-shift.

The need for vehicles to ensure the required intensity of concrete mixing:

$$N = Pbet * tcm / Ptr$$
(11)

where Pbet = k * n / Nvr - drinking capacity of concrete workers per hour,

k = 2 - number of concrete workers,

n = 4 - number of people in units, Hbr - time norm for laying concrete mix.

Selection of the number of auto-concrete mixers for concreting columns, diaphragms and walls.

Pbet =
$$2 * 4 / 1.6 = 5.0 \text{ m}3 / \text{h}$$
,
N = $5.0 * 8 / 35.4 = 1.13$

We accept concreting poles, diaphragms and walls with 2 auto-concrete mixers 69363B per shift.

Selection of the number of auto concrete mixers for concreting paving slabs.

Pbet = 2 * 4 / 0.57 = 14.04 m3 / hour,

N = 14.04 * 8 / 35.4 = 3.17

We accept 4 concrete mixers 69363B per shift for concreting slabs. A depth vibrator with a flexible shaft is used to compact the concrete mix in the columns, diaphragms and walls of the rigid core and elevator shaft. Model IV-75 with the following characteristics: - oscillation frequency 20000 Hz; vibrator:

- diameter 28 mm;
- length 400 mm; weight 14.3 kg.
- thickness of concreting layer 35-40 cm; technical capacity 4-7 m3 / h. Movable vibration is used on the paving slab to compact the concrete mix.

Model EVR-380 with the following technical characteristics:

- aluminum profiles 180x40x4 mm;
- length 2.5-4.5 m;
- 220 V vibration unit; power 0.5 kW; weight 69 kg.

3.2 Technology of work performance

Installation of columns and walls

DOKA molds were selected for molding works. Universal molds are used for kneading beams, diaphragms and stiffeners. Wedge lock serves as a template.

The support molds are also used to keep the molds in the design condition.

Cover mold device and mold care

The telescopic supports will be delivered to the construction site in disassembled form. Collect them immediately before installation. The nut of the screw jack is installed approximately 1/2 of the height of the transition groove, which allows you to subsequently level the assembled molds, working with the jack device by raising or lowering the movable rod.

The roof is assembled at once to cover all of the mold. Normal installation begins with the installation of telescopic supports, the vertical position of which is provided by the triangles. Then wooden plywood beams are installed on the telescopic supports in the form of grids, on which laminated plywood sheets are laid. The leveling of the assembled molds begins after checking the marks with the help of a level. This is achieved by means of screw jacks.

The deck of the molds and all threaded parts, regardless of whether they are in use or in stock, must be covered with a layer of lubricant.

Inventory molds, as well as supporting elements (supports) and similar fasteners (clamps, clamps, locks) must be cleaned of cement mortar after each turn. Scrapers and metal brushes are used for this purpose. It is strictly forbidden to use

hammers and other impact tools to remove mold elements from the solution. The use of inventory molds requires mandatory lubrication and thorough cleaning of cement mortar residues after each cycle. The lubricant must not leave oil stains, the lubrication must not impair the strength of the surface of reinforced concrete structures, the lubricating components must not contain volatile and harmful substances. Lubricants must be fire-safe, and the technology of their preparation and application must allow to mechanize these processes.

Reinforcement and concreting of ceilings

Work on the installation of ceiling fittings, given in this technological scheme. Prior to the start of reinforcement of monolithic structures, the following work must be performed on the typical floor:

the work on installation of monolithic structures of columns in the

corresponding occupations of the lower layer is completed; - stairwells are installed in the occupations of the ground floor;

openings in inventory panels are closed;

- devices for lighting the workplace, as well as devices for connecting electrical appliances and welding machines were prepared and installed on the floor;

- geodetic control of monolithic structures of the lower layer was conducted;

- control of acceptance of reinforcement products in the warehouse near the object.

Checks the fittings when receiving them in the warehouse near the facility: - the presence of labels on the elements, indicating the brand and number of elements;

- carries out control measurements, inspection of elements, as well as control of the strength of welded joints.

Reinforcement products are manufactured at the plant and delivered to the construction site by truck. Loading and unloading operations must prevent deformation, bending, damage to the welded joints of reinforcing elements, grids, frames and individual rods.

Spatial frames of columns are assembled from a flat frame, joints are made by spot welding. Space frames are mounted with a tower crane COMEDILCTT / B-8. Previously concreted reinforcement structures must be carefully adjusted, inspected and brought to the design condition before installation of the output block.

Laying of concrete mix and maintenance of concrete is performed by specialized joints. The work they perform includes:

- cleaning of molds before concreting, sealing all holes more than 10 mm wide and lubricating the surface of steel molds;

- cleaning of fittings from rust, dirt and sticky concrete solution; - processing of working seams;

- testing and inspection of equipment, inventory and devices used in the construction of concrete mixes;

- receipt, delivery and loading of concrete mix into columns;

installation and relocation of trucks and vehicles in the process of concreting; - cleaning of mechanisms, tools and devices from sticky concrete and mud after concreting;

watering of concrete during the initial hardening stage and covering it with moisture-requiring materials (sand, sawdust).

Each member of the concrete crew performs one or more specified work processes. The work of specialized joints of concrete workers is carried out in two shifts. Joints must be provided with a set of tools. Control and maintenance of paved concrete must be provided.

Table 8 – Control and maintenance		
Name of indicators	unit	number
Volume of concrete to be laid	M ³	198.7
Duration of shift work	shift	18
Labor intensity of work	man-shift	94
Production per person-shift	m3 / person-shift	2.11
Salary per person-shift	tg / person-shift	1559.2

4 Economic part

The building has 18 floors, the dimensions of the planned axes are 19.2×35.4 mm. 2 Elevator, Elevator hall, heated building with smokeless stairs.

Solid reinforced concrete frame is used as the lifting system of the building. The horizontal and longitudinal rigidity of the building is provided by the installation of diaphragms, as well as the creation of a hard disk of the roof.

The ceilings are made of solid 200 mm thick. The columns are made of solid reinforced concrete with a cross section of 400x400 mm. Loads are accepted by solid cast diaphragms with a thickness of 200 mm.

Calculation complex for determining the amount of project costs. In addition, the budget is a management tool used by management in the project implementation process, a tool for monitoring and analyzing the cost of funds for the project.

The volume of capital investments is determined on the basis of estimates:

1 Construction works;

2 Technological, Energy, hoisting - transport and other equipment, devices, tools and production inventory necessary for the operation of enterprises;

3 Work on the installation of this equipment,

4 Development of the construction site;

5 implementation of technological and author's supervision; 6) Development of project documentation.

It is very important to correctly determine the estimated cost of the project. The estimate, which accurately reflects the level of costs required, depends on the assessment of the cost-effectiveness of the project, planning and financing of capital investments. The more accurately the set of estimates and the accuracy of the proposed forecasts are determined. Organizes work on construction, reconstruction or expansion of buildings, structures, enterprises and their complexes.

Estimates in the process of designing enterprises, buildings and structures are made on the basis of graphic materials, the features of the accompanying records and determine the amount of costs associated with the construction, reconstruction or expansion of buildings, structures, enterprises and their complexes.

The estimated cost of construction and installation works is used to determine the contract price and to conclude contracts between the Customer and the Contractor, between the general contractor and subcontractors, as well as for settlements between them.

It is very important to correctly determine the estimated cost of the project. The estimate, which accurately reflects the level of costs required, depends on the assessment of the cost-effectiveness of the project, planning and financing of capital investments.

The more accurately the set of estimates and the accuracy of the proposed forecasts are determined.

Estimates are needed to evaluate the options for design solutions for the construction and reconstruction of industrial and non-industrial facilities and to choose the economic location. In addition, the estimated cost is used to compare the

options for the organization of construction and work production, the choice of design and construction materials.

On the basis of the estimate and the calendar plan the project budget is made and accounting, reporting and an estimation of activities of the Customer are carried out. Therefore, the estimated cost should not only cover the costs, but also ensure a certain profit. Estimation of the estimated cost of work and actual costs is the basis for determining the sources of benefits and reasons for costly work. But in any case, the estimate gives only a forecast of the final cost of the project, as its final cost will be known after the completion of project financing.

Preliminary calculation of the cost of construction is carried out at the design stage in the development of the feasibility study on the basis of aggregated standards, for objects of industrial significance can be used aggregate indicators of the basic cost of construction, models of industries and subsectors. On the basis of representative objects describing the model of residential buildings for mass construction to determine their value at current and projected prices at the initial stage of design for housing and social facilities, as well as for the calculation of capital investments for both cities and complex construction of housing estates It is recommended to use aggregate indicators of the developed base cost

The estimate documentation of the object is developed in connection with SNiP RK A2.2-1-2001 "Instructions for the composition of design and estimate documentation for the construction of institutions, buildings and structures and the procedure for production, coordination, approval." The estimate was calculated in 2001 according to SNiP RK 8.02-02-2002 "Procedure for determining the estimated cost of construction in the Republic of Kazakhstan". The transition from 2001 prices to 2009 prices is calculated using the calculated monthly index provided for in the legislative budget.

Estimated documentation was developed on the basis of project materials related to 12 territorial districts in the software complex ABC-4 (version 3.16.1)4 Occupational safety and health

Rope calculation

Hanging of cargo is one of the most responsible operations when performing rigging works. The design of the ropes must ensure the safety and comfort of work, as well as the ability to quickly hook and unload the load. The number of branches of the suspended ropes is selected depending on the weight of the load to be lifted and the diameter of the rope. Usually, due to the increase in the diameter of the rope tends to use loops with a small number of branches. The load capacity of the ropes is determined by the breaking strength of the rope, taking into account the number of points and the coefficient of strength. Permissible force at each point in the vertical position of the sling;

Table 9 - Industrial	sanitation,	fire safety	and labor	protection
		<i>.</i>		1

Decisions on industrial sanitation, fire safety and	These solutions are part of the	
labor	developed diploma project	
protection	account explanatory schedule	
	note section	
	part № pages	sheet of
		N⁰
volume-planning decisions on safety: - the	СБ	
dimensions of the sanitary protection zone, the		
sanitary gap are determined;		
- location of platforms, passages, entrance gates	СБ	
and entrance doors in terms of safety		
thermal engineering calculations of fencing		
structures were carried out		
based on the use of heating systems, local exhaust,	TX	
exhaust, general exchange ventilation.		
The ropes were counted	СБ	
fire safety	TX	
the following were identified: categories of	ПОС	
premises and buildings for general explosion and		
fire hazard; the required degree of fire resistance		
of the building; basic construction		

$$S = G \cdot g / (k \cdot n \cdot \cos \alpha)$$
(12)

where G is the weight of the load. H (kgf);

g - acceleration of free fall (g = 10 m / s2);

n is the number of sling branches;

 α - Angle branches rope (in degrees).

Substitute for the coefficient m to calculate $1 / \cos \alpha$;

$$\mathbf{S} = \mathbf{m} \cdot \mathbf{G} \cdot \mathbf{g} / (\mathbf{k} \cdot \mathbf{n}), \tag{13}$$

 $S = 1.41 \cdot 2980 \cdot 10 / (0.75 \cdot 4) = 14006 H = 14, kN$

where m is the coefficient $\alpha = 45^{\circ} - m = 1.41$, depending on the vertical slope of the branch.

The ropes were calculated to replace the bucket with a weight of 2.98 tons of concrete, the total weight of the load to be lifted was 2980 kg, the number of rope branches was m = 4, kz = 0.75. The ropes must be tested for strength P / S $\ge k$

 $P > S \cdot k = 14 \cdot 6 = 84$ kN where P is the total rope breaking strength H (kgf) according to the certificate; S - maximum traction of rope branches; k is the coefficient of strength fund = 6.

The rope was selected according to the tensile strength R found and its technical data were determined: temporary tensile strength, maximum design, and its diameter.

The found R 6x19 corresponds to a rope of double construction of type lk-r (1 + 6 + 6/6) + 1 o.s. (GOST 2688-80) with a diameter of 14 mm, the design breaking force of the rope is 98 kN.

Occupational safety is a system of protection of life and health of employees in the process of labor activity, which includes legal, socio-economic, organizational, technical, sanitary, treatment, prevention, rehabilitation and other measures.

Occupational safety requirements are understood as state regulatory requirements for labor protection, including occupational safety standards, as well as labor protection requirements established by labor protection rules and instructions.

The state guarantees employees the protection of their right to work in conditions that meet the requirements of labor protection.

The working conditions provided for in the employment contract must comply with the requirements of labor protection

The total cost of the project is 1029808579.

CONCLUSION

The diploma design task for the construction of dormitory with sport complex in Almaty city was completed in full in accordance with the curriculum. Makes up 9 pages of graphic section and explanatory notes. The diploma project is based on the literature adopted in the construction, the purpose of which is to create a modern and comfortable building. New materials and technologies were used in the project. Technical and economic indicators of the project confirm the rationality of the decisions made.

The following results were achieved during the writing of the thesis: - In the design of any building is not only the choice of spatial and architectural solutions, but also the correct placement of the object in the middle of the urban construction site. - The architectural decision of the building, first of all, should be based on the correct choice of lifting structures. Modern construction allows the use of a number of highposition systems, including the leading position of the monolithic frame.

- It is possible to calculate structures with the help of computer technology, which is a software package. In this way, the process of calculation and assembly is capacious, it is possible to record the effects on the design schedule of the building with all the necessary loads. The combination of different loads of the elements of the main building gives accurate results.

- At the same time, the technology of construction production is designed taking into account all modern methods and techniques of production. Effective timing of construction machinery and equipment and the fact that it often reduces the complexity of the labor process, allows you to plan correctly.

- Development of estimates of construction costs, local estimates allow to assess the versatility and feasibility of the construction project of the facility. ABC-4 software package significantly simplifies this calculation;

- In today's society, it is important to assess the impact of construction on the environment, for which calculations are made in relation to the environment. - In any industry, including construction, human life requires safe, comfortable and legally protected employment in accordance with the law. For this purpose, there will be a set of measures for safety and health.

LIST OF REFRENCES

1 Байков В. N., Sigalov E. E. Reinforced concrete structures: General course:

For higher education. - М .: стройиздат, 2002.-767с.

2 PM&E (ENiR) E2 Earthworks. 1st edition.

3 PM&E E4 Installation of solid and prefabricated TV structures.

4Gaeva AF Usik S.A. - Course and diploma design. Industrial and civil buildings. Stroyizdat. M, 2002

5 Dickman L. Γ. Organization and planning of construction production: textbook.- 3rd edition, - M .: Higher school, 2000.-559p.

6 Lyubarsky AD Organization of construction and production technology, M., 1991.

7 KM 81-80. Instructions for designing electric lighting for construction sites. Stroyizdat. M, 2001

8 Construction and installation works 2.01.04-85 "Loads and effects" Gosstroy USSR M.2002

9 Construction and installation works II-3-79 **. Construction heat engineering. M. Gosstroy of the USSR.

10 Construction and heat engineering of RK 2.04-03-2002. Design dimensions.

11 Construction and erection works 2.04-03-2002. Design dimensions of natural and artificial lighting.

12 Construction and Public Works of the Republic of Kazakhstan 3.0202-2001 "Public buildings and structures", Almaty, 2001.

13 1.03-05-2001 "Occupational health and safety", Almaty, 2001.

14 MES RK 2.02-01-2001 "Fire safety of buildings and structures", Almaty, 2001.

15 Ministry of Defense of the Republic of Kazakhstan 8.02-02-2002

"Procedure for determining the estimated cost of construction in the Republic of Kazakhstan", Almaty, 2002

16 PPE 2.01.02-85 Fire-fighting doses. Gosstroy USSR CITP, M, 2002 16 s.

17 Construction and erection works 1.04.03-85 Dimensions of construction duration during the construction of buildings and structures, enterprises Stroyizdat, 2002.

18 Construction and erection works 3.01.01-85 Organization of construction production. Stroyizdat, 2001

19 Construction and erection works 2.03.01-84 Concrete and TB structures M.2001.

20 MES RK 2.03.30-2006 "Construction in the seismic zone".

21 The Law of the Republic of Kazakhstan "On Environmental Protection", adopted on July 15, 1997.

22 SK Khamzin, AK Abishov. Technology of construction processes/ Almaty, Publishing House, 2003 23 S.K. Khamzin, "Installation of building structures" - Shymkent, 2001.

Application A

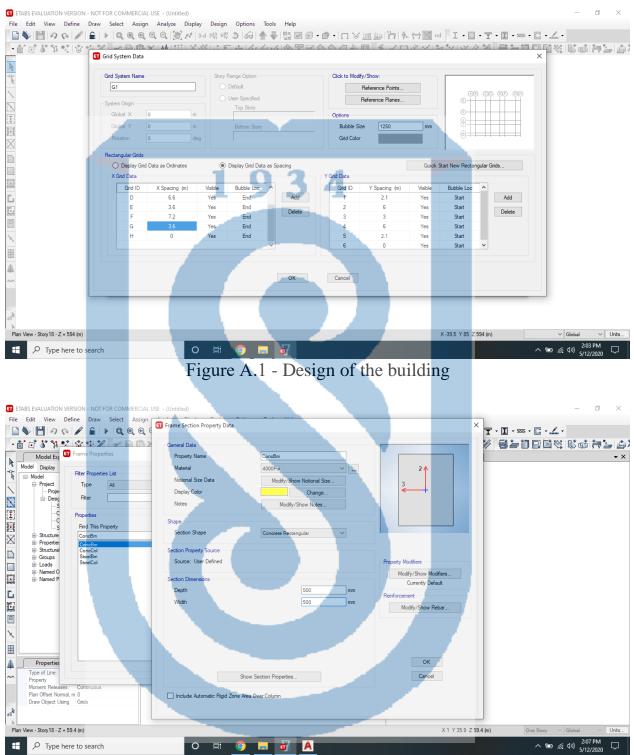


Figure A.2 - Design of elements

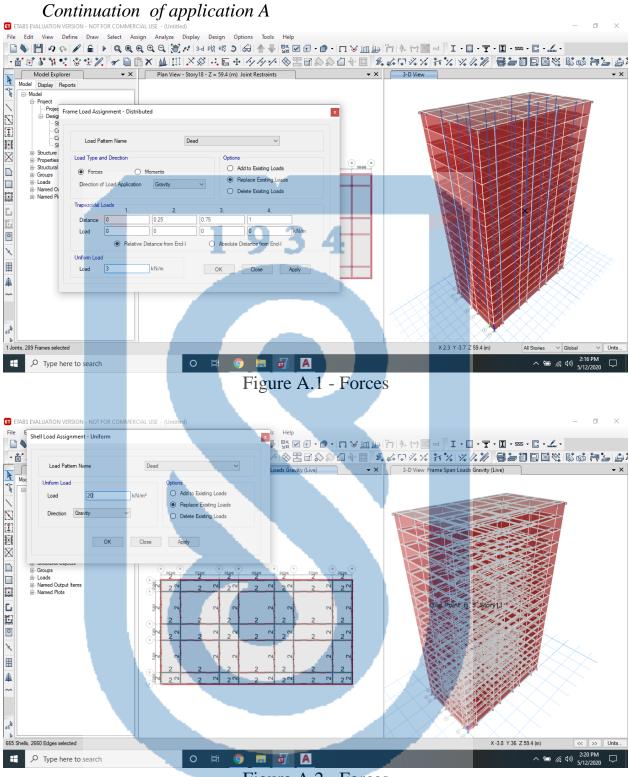


Figure A.2 - Forces

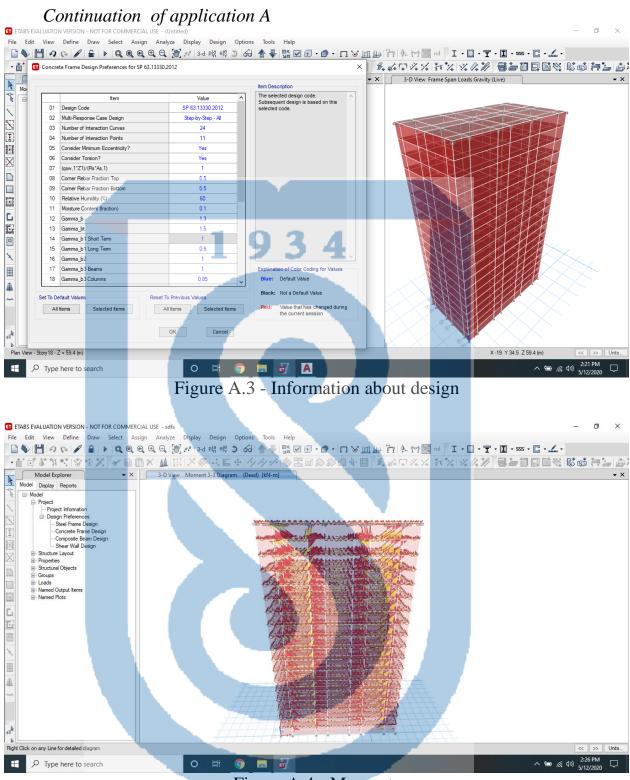


Figure A.4 - Moments

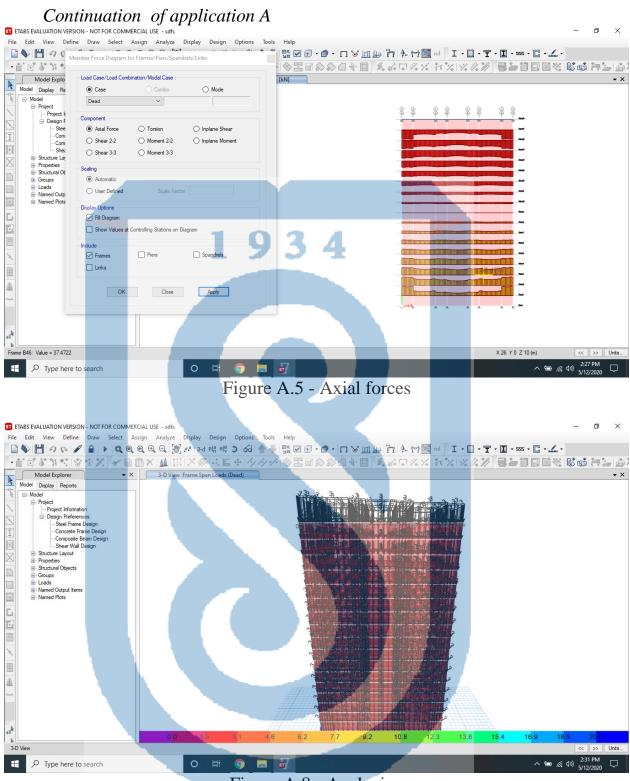
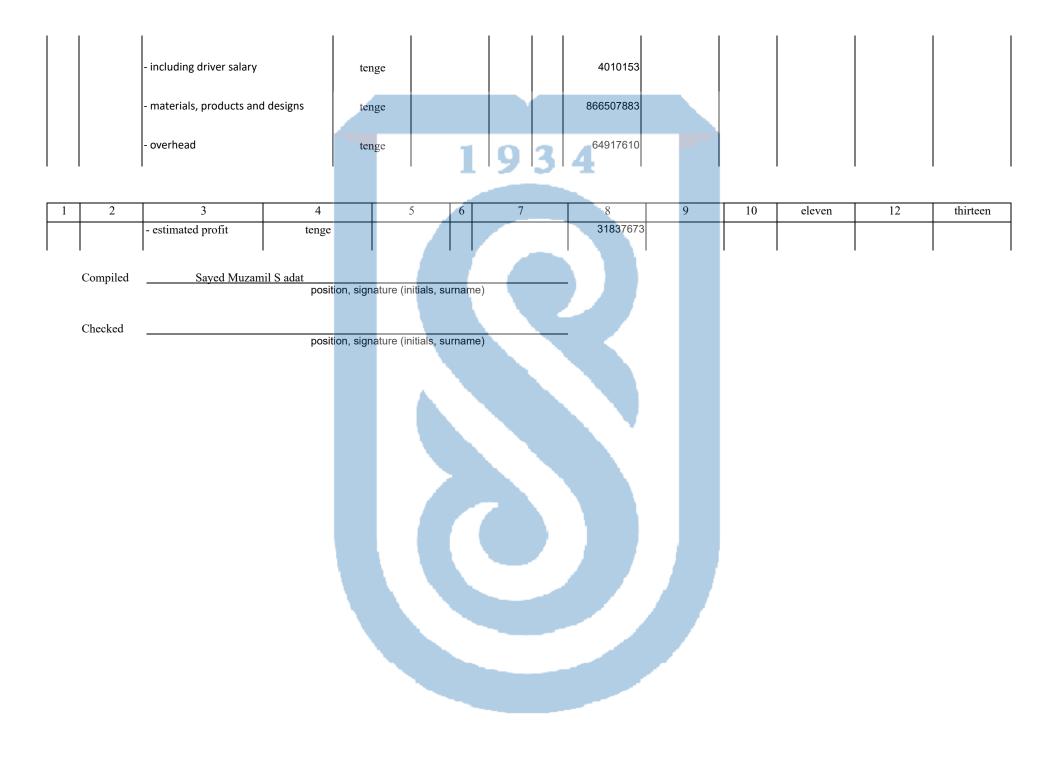


Figure A.8 - Analyzing

Con	struction	Name <u>Dormitory wi</u>	th sport complex	in Almaty city	- 1	93	4					
Obj	ect name	dormitory										
on the Base						I estimate No. (Local estin General constructi (name of work and	nate) on work					
		current prices as of 2020.						Estir		18 2489.658	thousand tenge thousand tenge thousands of pe	ople
No. p/ p	Norm code, resource code	Name of work and costs	unit of measurement	amount	Unit o Total	cost, tenge machine operation	Total	otal cost, tenge machine operation	materials	Overhead, tenge	Total cost with NR and SP, tenge	Labor costs of construction workers, total
					salary of construction workers	including salary of drivers	salary of construction workers	including salary of drivers	equipment, furniture, inventory	Estimated profit, tenge		Labor costs of drivers, total
1	2	3	4	5	6	7	8	9	10	eleven	12	thirteen
		Coef. Take into account the 1.15 - Construction of engin						amped condition	ns of the bui	t-up part of citio	es	
1	1101- 0201- 1001	Plot number 1 Earthwork	m3 soil cushion	481.0	515.69 1.64	620.71 175.7 2		222763 63 366		6 5192 20 177		0.79 37.16

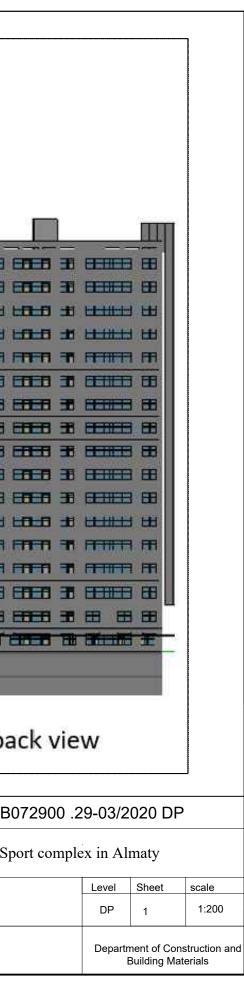
1	2	3	4	5	6	7	8	9	10	eleven	12	thirteen
2	1101-0205- 0202t, 11,	Soil of 2 groups. Manual	m3 of soil	862.0	3244.34	-	2872186	-	-	1879974	5092333	2450.13
	Sec. 3.179K = 1.2	Soil of 2 groups. Manual development with fastenings in trenches more than 2 m wide and pits with a cross-sectional area of up to 5 m 2 and a depth of 2 m.			3244.34	-	2472186		-	400173		-
		[Manual processing, cleaning the bottom and walls with filling the soil in pits and trenches, developed by a mechanized method]		1	9	3 -	4					
3	1101-0102- 0320		m3 of soil	3585.0	204.32	199.04	528179	514523	717	63011	728485	14.80
	0020	Soil of 2 groups. Development with loading onto dump trucks by HITACHI excavators with 1 m3 bucket			5.01	28.85	12939	74576	-	57295	-	73.75
4	1101-0104- 0405		m3 of soil	2224.0	20.57	20.57	27177	25177	-	6867	44608	-
		Trenches and pits. Filling with bulldozers with a capacity of 79 kW (108 I) when moving soil up to 5 m. Soil group 2				7.79		9537	-	3064		5.35
5	1101-0201- 0102		m3 compacted soil	2025.0	76.42	76.42	231162	231162	-	61566	616146	-
		Primer. Sealing with trailed rollers on pneumatic wheels 25 tons. The first pass along one track with a layer thickness of 30 cm.	5011			30.27		86009	-	23418		48.67
6	1101-0101- 0320		m3 of soil	2224.0	155.98	151.69	190921	225668	-	20046	287844	6.01
	0020	Soil of 2 groups. Development into a dump with HITACHI excavators with 1 m3 bucket			4.29	18.45	6 053	22588	-	188877		25.34
7	1110-0113- 0101		m2 fence	2710.0	5749.87	324.51	13282189	749621	6499125	5775797	19507025	4516.05
	0.01				2611.88	132.61	6033443	306331	-	1819039		150.09
8	1101-0207- 1301	Shrubs and dense forests are dense. Cutting in soil of natural occurrence by brush cutters on a tractor 79 kW	ha	0.95	24456.22	24456.22		23233	-	5355	32075	-
		by brush cutters on a tractor 79 kW (108 l s)				7828.95		7437	-	2287		4.13
		Total section number 1					16949564	1925147	6499973	7685808	32006202	6987.78
							9524444	565344	-	1970830	F	344.49
		Section No. 2 Foundations					· ·				Į	

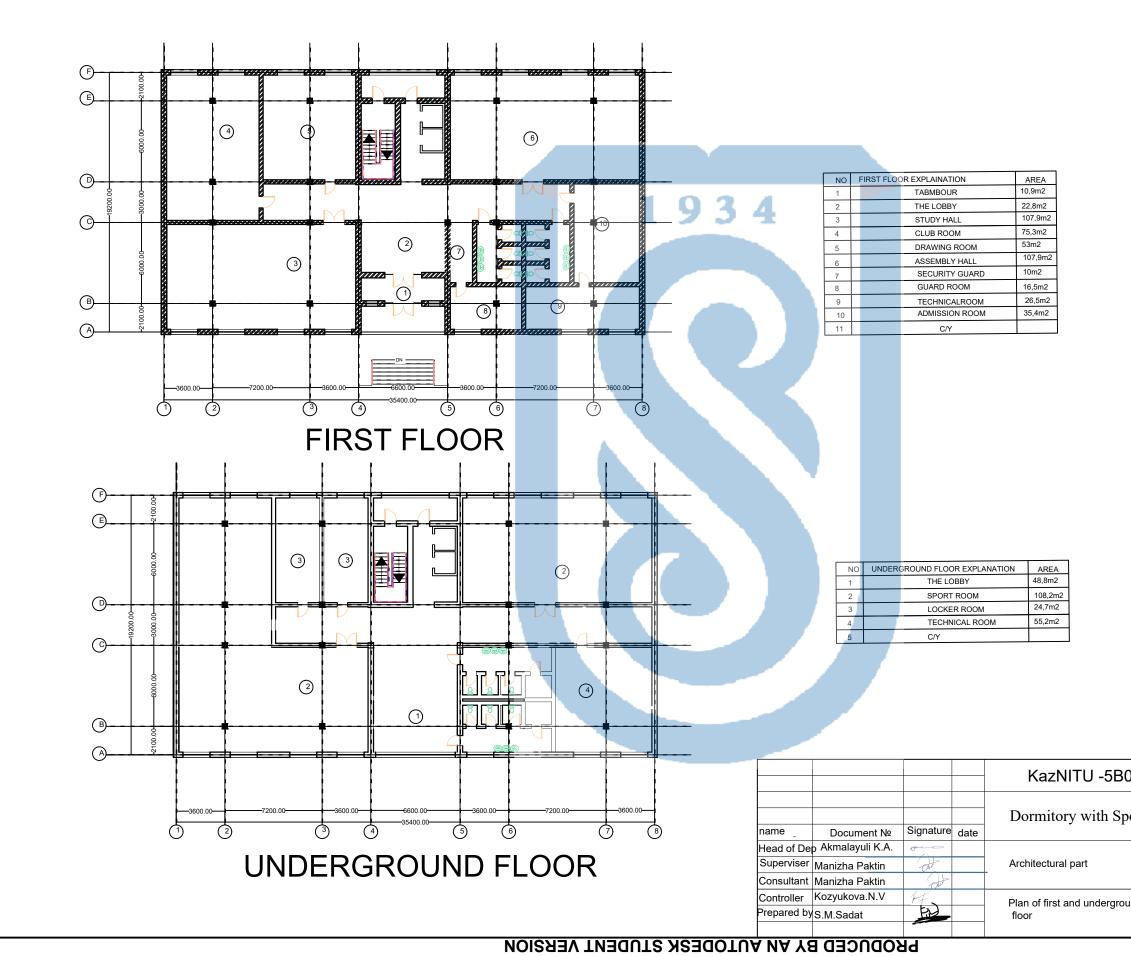

1	2	3	4	5	6	7	8	9	10	eleven	12	thirteen
9		Walls, foundations. Waterproofing	m2 surface	7122.5	895.51	22.94	5482748	140448		1722416	8881577	1492.67
		of the side coating with bitumen in 2 layers on a leveled surface of			299.63	2.87	1834486	17574	-	576413	_	08/14
		crushed stone, brick, concrete		1	0	3						
10	2105-0301-	Hot-rolled reinforcing steel of a	t	300.0	209067.00		53312085		53312085		62077052	
		periodic profile of class A-III (A400) with a diameter of 14 to 32 mm ST RK 2591-2014						-	-	4264967	-	-
eleven	1137-0104-	Stationary wooden stationary	m2 of opal	190.0	3648.10	249.90	656656	44981	329493	268829	999524	264.96
		simple massive blocks. Installation and dismantling upon delivery of	surface		1567.68	73.53	28 2182	13235	-	74039	_	8.59
		10-25 tons of concrete tower cranes										
12	0115	Reinforced concrete foundation	m3	1600.0	21508.74	1906.13	32263113	2859191	26177223	3508341	40633170	3087.75
		slabs are flat. device			2151.13	419.08	3226699	628621	-	2861716		496.46
thirteen	1106-0101- 0101	Concrete preparation. device	m3	400.0	15994.07	1241.59	4798223	372476	4018681	441466	5658864	465.75
					1356.88	260.20	407066	78061	-	419175		62.55
		Total section number 2					96512825	3417096	87345296	5941052	220650187	5311.13
							5750433	737491	-	8196310		581.68
		Frame section number 3										
14	1106-0501- 0201	Columns of civil buildings in metal formwork. device	m3	300.64	66542.93	31647.41	13351173	6349736	3711785	4215757	19072284	2868.05
					16395.79	6693.82	3289652	1343048	-	1405354		1073.29
fifteen	2105-0301-	Hot-rolled reinforcing steel of a	t	26.7	209067.00	-	5163955		5163955	-	6077071	
		with a diameter of 14 to 32 mm ST			-	-	-	-	-	413116		-
		RK 2591-2014										
sixteen	1137-0104- 0601	Metal mesh formwork. Installation	m2 of opal surface	2008.4	7644.45	226.67	15337823		10168890	4355722	41269029	4360.91
		and dismantling upon delivery of 10-25 tons of concrete tower cranes	Surface		2349.55	36.07	4714144	72364	-	1575484		48.22

Total for section No. 3			33852951	6804525	19044630	8571479	54 818384	7228.96
			8003796	1415412	-	3393954		1121.51
I		r I						

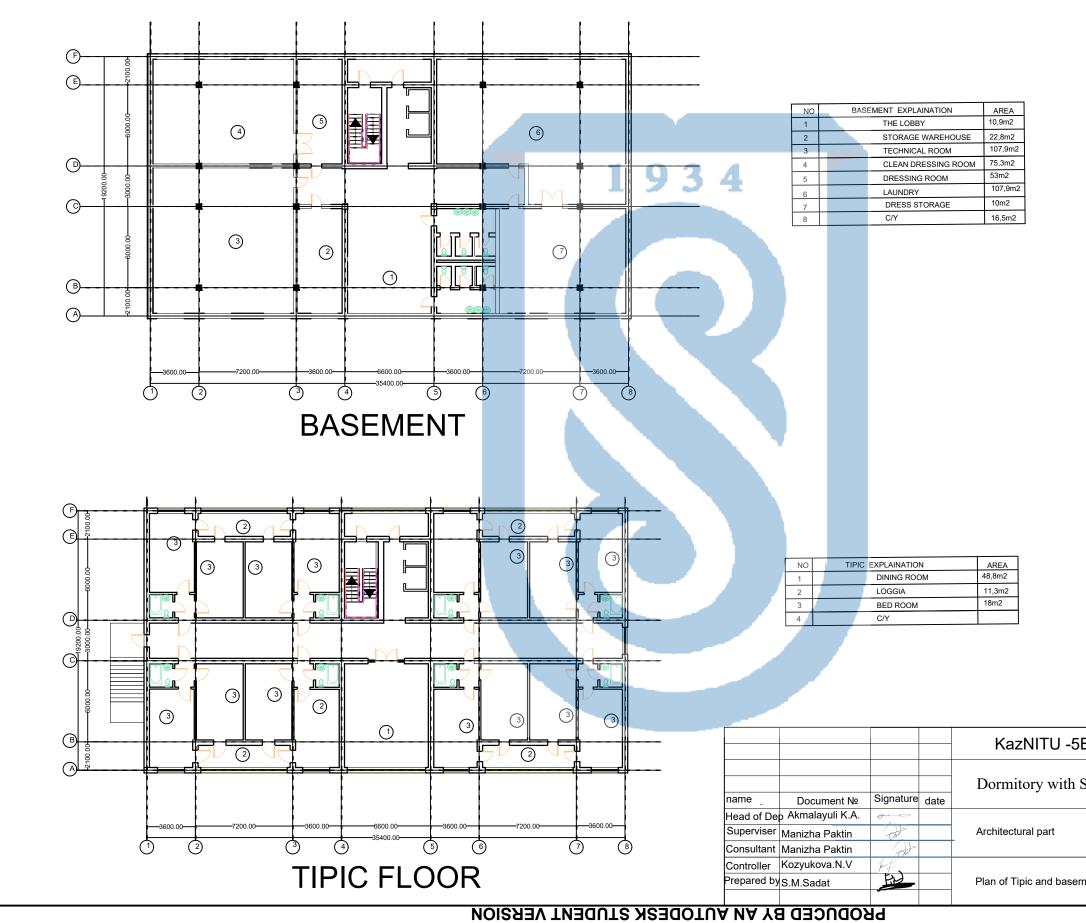
1	2	3	4	5	6	7	8	9	10	eleven	12	thirteen
		Section No. 4 Overlap			7	5	1					
17	1106-0801-	Beam-free ceilings up to 200 mm	m3	2000.9	36752.46	2067.30	66187500	3722994	44686949	16920184	92756299	16692.54
		thick. Devices at heights from the reference area to 6 m			9871.48	453.14	17777557	816052	-	6648615	-	645.54
eighteen	2107-0510- 1003	The formwork is collapsible panel board, the ShchD brand 1,5x0,4,	m2	4001.5	15707.00	-	57144560		47144560	-	50916125	
		the size is 1500x400x417 mm,				-		-	-	3771565	_	
		GOST 23477-79										
nineteen	2105-0301-	Hot-rolled reinforcing steel of a	t	262.0	209067.00		5268 4884		52684884	-	56899675	
		periodic profile of class A-III (A400) with a diameter of 14 to 32 mm ST				-		-		4214791	_	
		RK 2591-2014								1217101		
		Total section number 4					166 016944		144516393	16920184	197572099	16692.54
							17777557	816052	-	14634971		645.54
		Section 5 of the Wall							I	ļ	I	
twenty	1108-0701-	An open inventory forest up to 16	m2 vertical	2863.2	736.39	2.12	2034802	5855	560192	1368524	3675592	1379.1 ²
twenty		An open inventory forest up to 16 m high tubular for masonry and	projection	2000.2	631.54	1.00		2776	000102	272266		2.22
		cladding. Installation and disassembly			-031.34	1.00	1406755	2770	-	272200		2.24
		·										
21	1108-0301- 0101	Walls made of lightweight concrete stones. Brickwork without facing	m3 masonry	602.64	9050.69	3005.13	5001774	1660757	823150	2666173	8281383	2364.19
		with a floor height of up to 4 m			5856.07	631.49	2517867	348986	-	613436	_	279.64
		Tatal sastian number F					7020570	4000040	4400040	4004007	22056075	0740.00
		Total section number 5					7036576	1666612	1483342	4034697	22956975	3743.30
							3986622	351762	-	885702		281.86
		Section No. 6 Roofing		I	I	ļ	I I	ļ		I	I	

22	1112-0101	- Four-layer flat roofs from rolled	m2 of roof	3012.0	3339.91	150.58	8389863	378266	7093054	887753	10019825	759.75
	0201	roofing materials on bitumen mastic with a protective layer of gravel on antiseptic bitumen			365.66	18.47	918543	46406	-	78 2209		09/31
		mastic. device										
				-		2					400 40005	
		Total for section No. 6			9	34	8389863	378266	7093054	887753	199 19825	759.75
							918543	46406	-	742209		09/31
		Section No. 7 Narueno finish										
_												
1	2	3	4	5	6	7	8	0	10	eleven	12	thirteen


1	2	3	4	5	6	7	8	9	10	eleven	12	thirteen
23		Facades ventilated on a metal frame.	m2 of cladding	1581.6	9491.06	52.43	13112844	72438	363903	10153146	35127269	10157.45
		Fiber cement cladding device with cradles			9175.23	10.81	12676503	14929	-	1861279	_	9.85
24	2103-0499- 9903	Straight stone cladding	m2	1462.6	-	-	-		-	-	-	
		Total section number 7					13112844	72438	363903	10153146	35127269	10157.45
							12676503	14929	-	1861279	-	9.85
		Department No. 8 Interior decoration										
25	1115-0203-	Walls inside buildings. Plastering with	m2 of	1000.6	1203.88	80.31	1181729	78830	261292	723491	2057638	733.75
		cement-lime or cement mortar on stone and concrete is simple.	plastered surface		857.38	63.93	841607	62757	-	152418	-	60.05
		Total section number 8					1181729	78830	261292	723491	3057638	733.75
							841607	62757	-	152418		60.05
		Overall rating					343053296	19065009	266507883	54917610	1029808 579	51614.66
							343033290	18003908	200307803		1029000 379	51014.00
							58479505	4010153	-	31837673		3079.07
		Overall rating:	tenge				1029808 579					
		_	8-									
		including:										
		- salary of builders	tenge				88479505					
		the cost of energting the machines	_				74065009					
I	l	- the cost of operating the machines	tenge		I		74065908	I		I	I	I

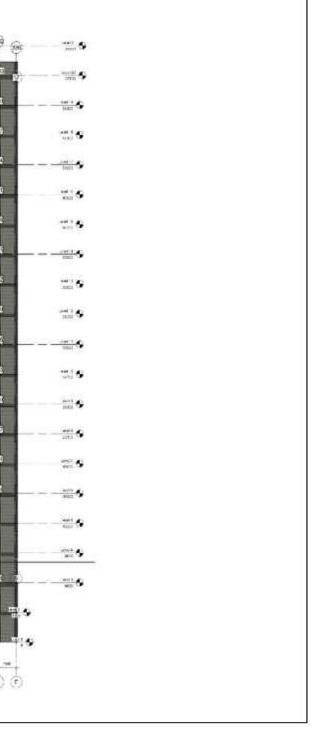


DORMITORY VIEWS


KazNITU -5B				
Image: Image	Front view	side view	side view	ba
name _Document №SignaturedateHead of DepAkmalayuli K.ASuperviserManizha PaktinArchitectural partConsultantManizha PaktinControllerKozyukova.N.V				KazNITU -5B0
Head of Dep Akmalayuli K.A.				Dormitory with Sp
Controller Kozyukova.N.V H			Head of Dep Akmalayuli K.A. Superviser Manizha Paktin	Architectural part
			Controller Kozyukova.N.V	Facades

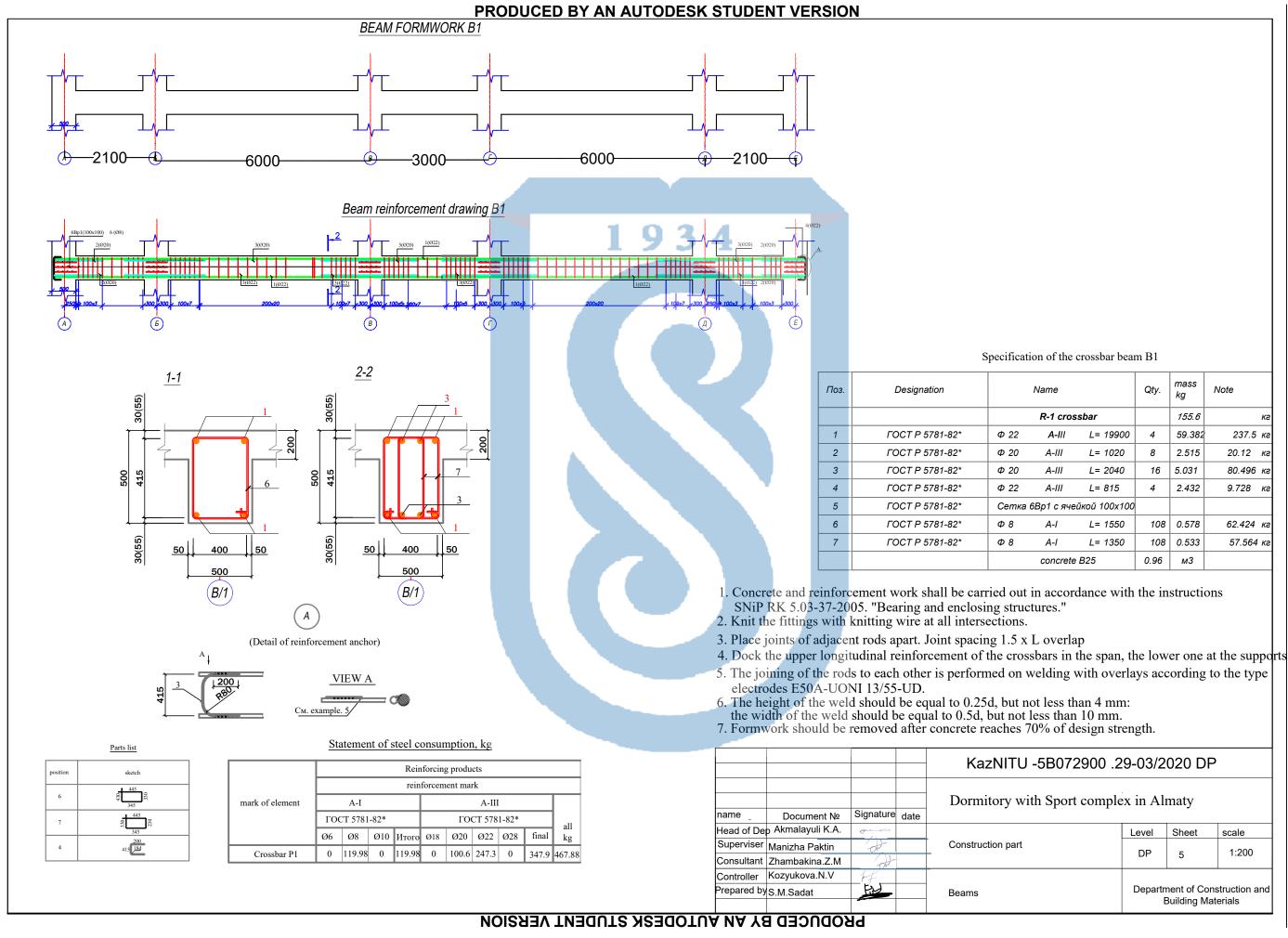
ΡΑΟDUCED ΒΥ ΑΝ Αυτορεςκ student version

	Level Sheet scale						
	DP	2	1:200				
ground	Department of Construction and Building Materials						



B072900 .29-03/2020 DP	

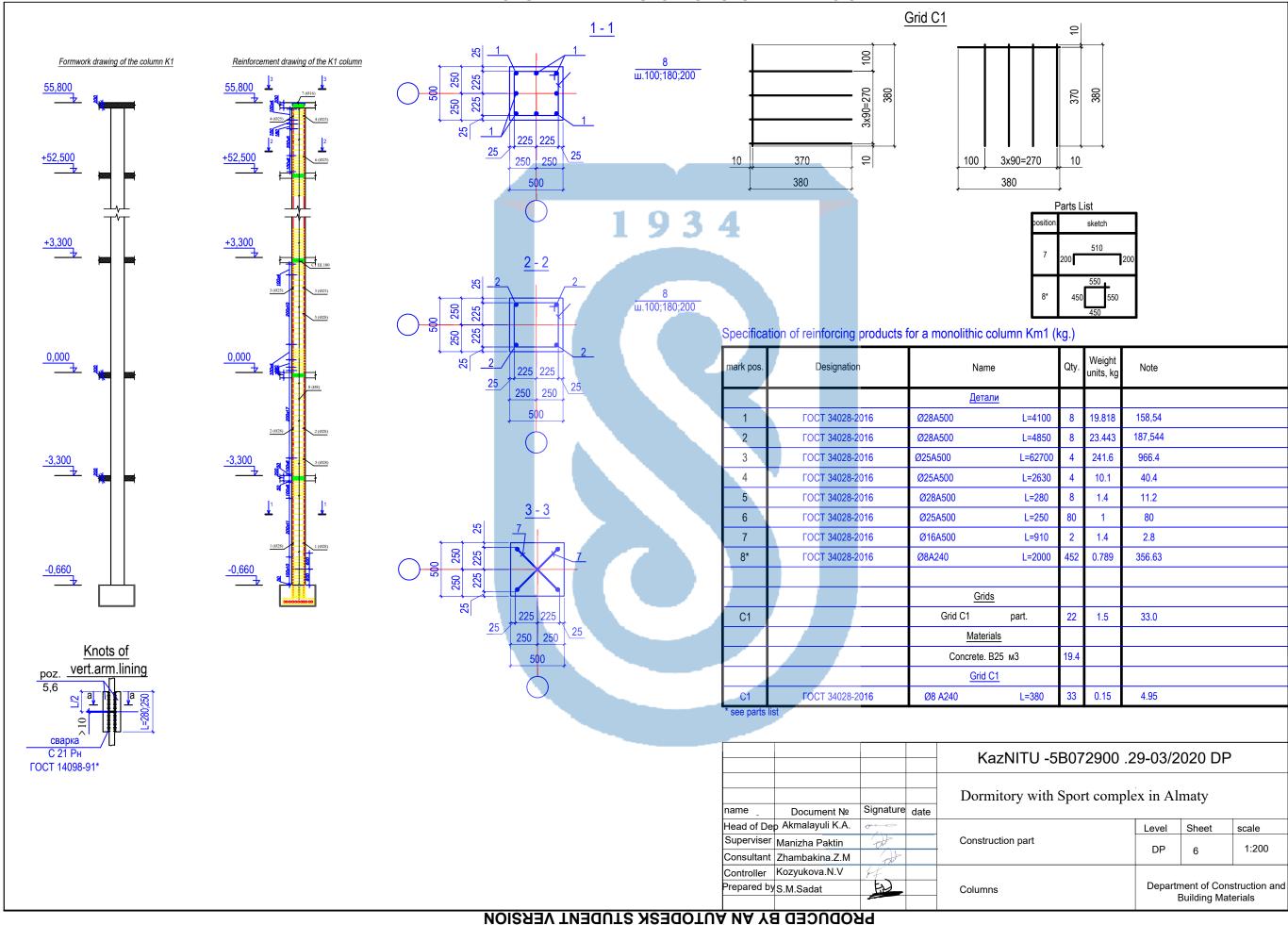
	Level	Sheet	scale		
	DP	3	1:200		
ment floor	Department of Constructio Building Materials				



ΡΑΟDUCED ΒΥ ΑΝ Αυτορεςκ στυρεντ νεκσιον

KazNITU -5B072900 .29-03/2020 DP

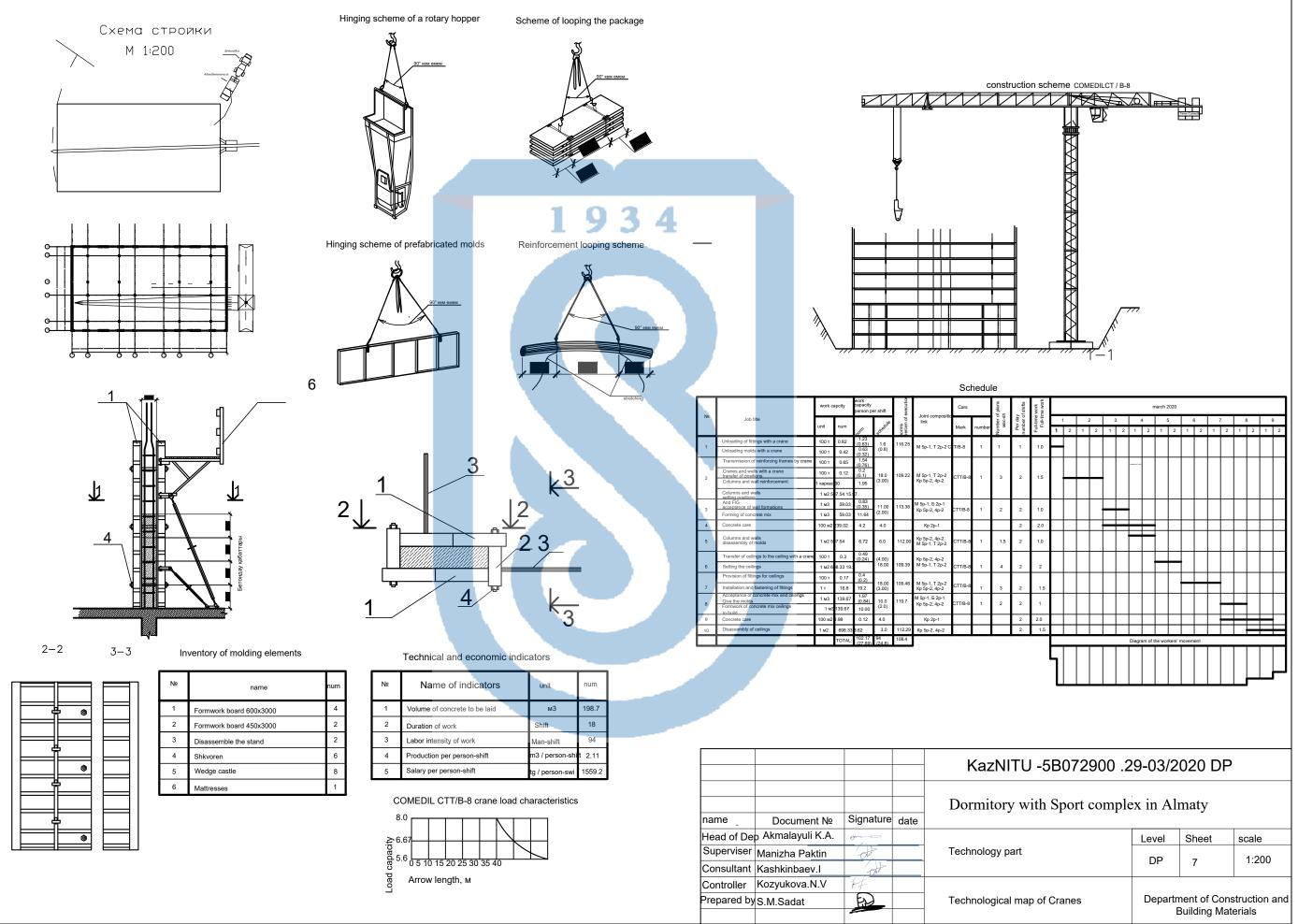
	Level	Sheet	scale
ural part	DP	4	1:200
	Department of Construction an Building Materials		

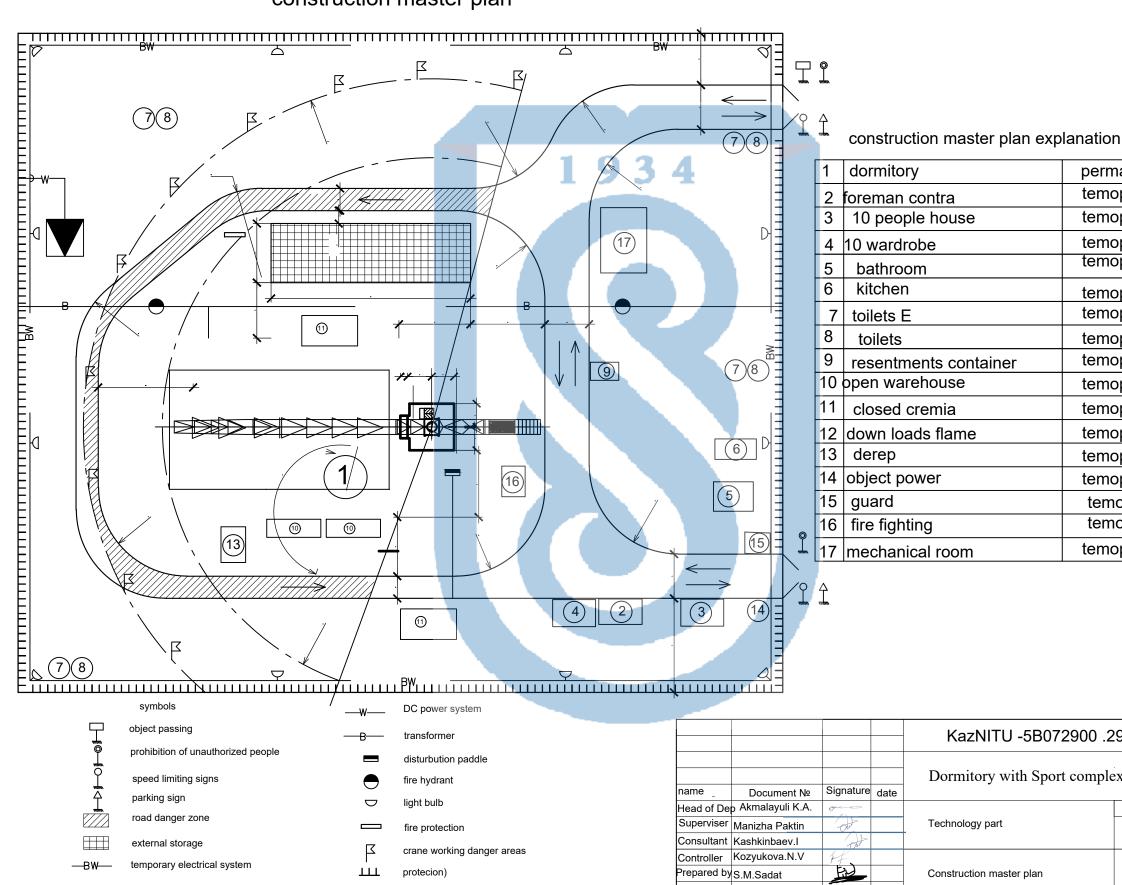

me		Qty.	mass kg	Note
-1 crossbar			155.6	кг
A-III	L= 19900	4	59.382	237.5 кг
A-111	L= 1020	8	2.515	20.12 кг
A-111	L= 2040	16	5.031	80.496 кг
A-111	L= 815	4	2.432	9.728 кг
1 с ячейкой 100х100				
A-I	L= 1550	108	0.578	62.424 кг
A-I	L= 1350	108	0.533	57.564 кг
oncrete B25		0.96	мЗ	
			-	

Specification of the crossbar beam B1

KazNITU -5B072900 .29-03/2020 DP

Level	Sheet	scale
DP	5	1:200
Department of Construction and Building Materials		

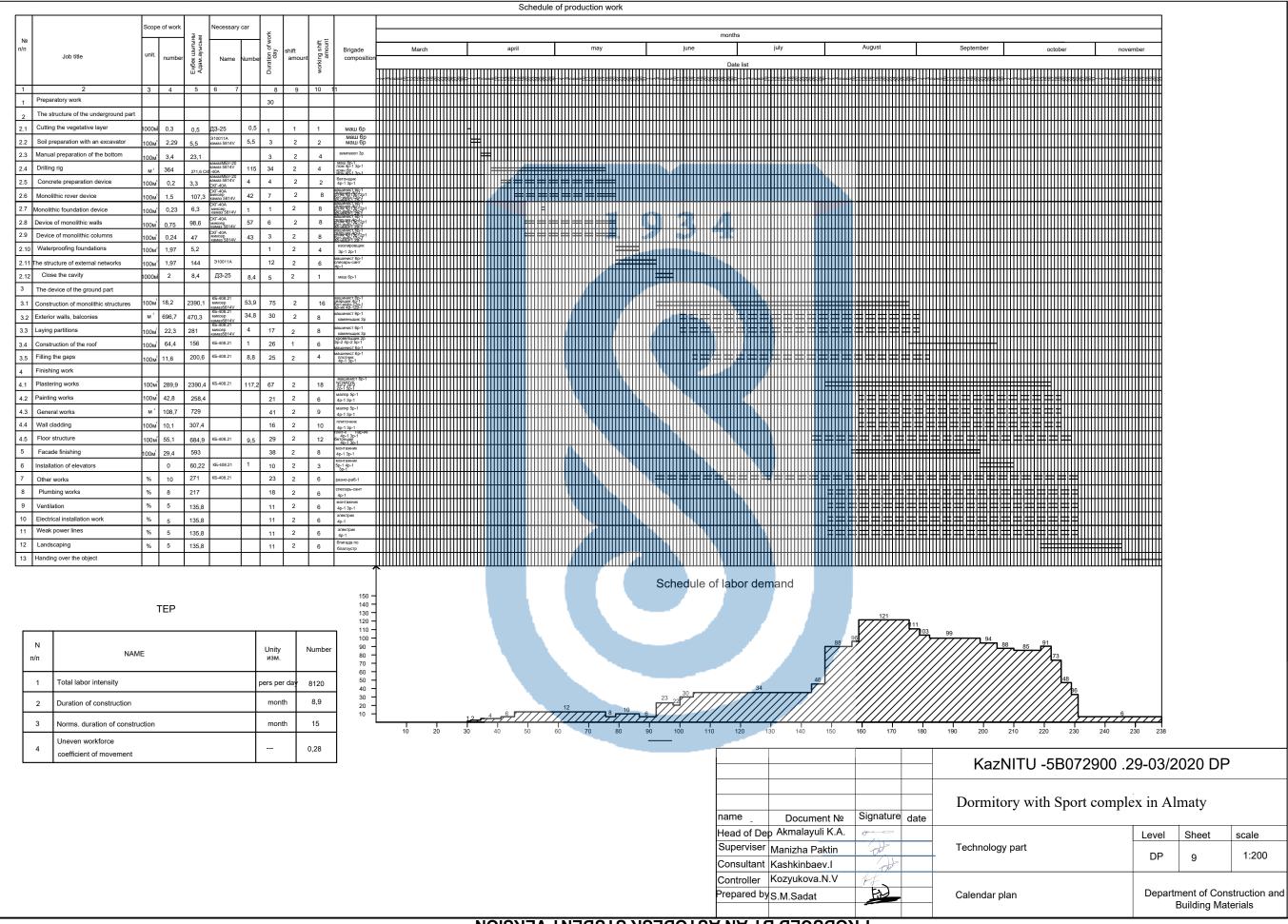



PRODUCED BY AN AUTODESK STUDENT VERSION

Level	Sheet	scale
DP	6	1:200
Department of Construction and Building Materials		

PRODUCED BY AN AUTODESK STUDENT VERSION

ΡΩΟΝΟΕΕΣ ΑΥ ΑΝ Αυτορές κατυρέντ νεκαιον



construction master plan

ΡΩΟΟΟΕΕΣ ΒΥ ΑΝ Αυτορές κ στυρεντ νεκσιον

permanent
temoporary

B072900 .29-03/2020 DP				
Sport complex in Almaty				
	Level	Sheet	scale	
	DP	8	1:200	
an	Department of Construction and Building Materials			

PRODUCED BY AN AUTODESK STUDENT VERSION

ΡΑΟDUCED BY AN AUTODESK STUDENT VERSION

PRODUCED BY AN AUTODESK STUDENT VERSION

Протокол анализа Отчета подобия

заведующего кафедрой / начальника структурного подразделения

Заведующий кафедрой / начальник структурного подразделения заявляет, что ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

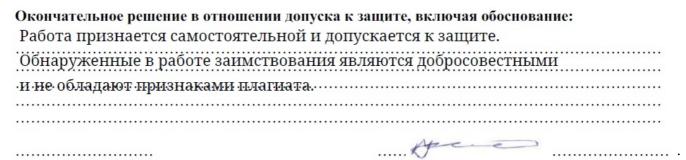
Автор: Садат Саид Музамиль

Дата

Название: Dormitory with a sports complex in Almaty

Координатор: М	анижа	Пактин	
Коэффициент по	одобия	1934	
Коэффициент по	одобия	1 2: 0,5	
Замена букв:51			
Интервалы:0			
Микропробелы:	0		
Белые знаки:0			

После анализа отчета подобия заведующий кафедрой / начальник структурного подразделения констатирует следующее:


 □ обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, работа признается самостоятельной и допускается к защите;
 □ обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;

□ обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, работа не допускается к защите.

Обоснование:
Обнаруженные в работе заимствования являются добросовестными
и не обладают признаками плагиата.
•В•связи•с•чем; работа признается самостоятельной и допускается к защите;•••••
Aprile

Подпись заведующего кафедрой /

начальника структурного подразделения

.....

Дата

Подпись заведующего кафедрой /

начальника структурного подразделения

Протокол анализа Отчета подобия Научным руководителем

Заявляю, что я ознакомился(-ась) с Полным отчетом подобия, который был сгенерирован Системой выявления и предотвращения плагиата в отношении работы:

Автор: Садат Саид Музамиль

Название: Dormitory with a sports complex in Almaty

Координатор: Манижа Пактин

Коэффициент по	добия	a 1:2,7	
Коэффициент по	добия	1934 1934	
Замена букв:51			
Интервалы:0			
Микропробелы:	0		
Белые знаки: 0			

После анализа Отчета подобия констатирую следующее:

обнаруженные в работе заимствования являются добросовестными и не обладают признаками плагиата. В связи с чем, признаю работу самостоятельной и допускаю ее к защите;

□ обнаруженные в работе заимствования не обладают признаками плагиата, но их чрезмерное количество вызывает сомнения в отношении ценности работы по существу и отсутствием самостоятельности ее автора. В связи с чем, работа должна быть вновь отредактирована с целью ограничения заимствований;

обнаруженные в работе заимствования являются недобросовестными и обладают признаками плагиата, или в ней содержатся преднамеренные искажения текста, указывающие на попытки сокрытия недобросовестных заимствований. В связи с чем, не допускаю работу к защите.

Обоснование:

Обнаруженные в работе заимствования являются добросовестными, и не обладают признаками плагиата. В связи с чем, признаю работу самлстоятельной и допускаю ее к защите.

Подпись Научного руководителя

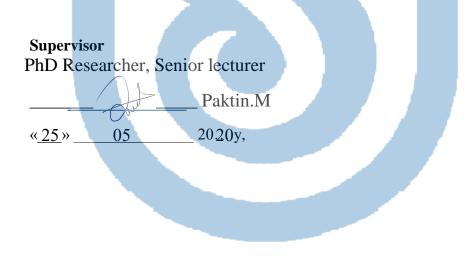
Дата

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН СӘТБАЕВ УНИВЕРСИТЕТІ

RESPONSE

OF THE SUPERVISOR

For the graduation project Sadat Said Muzamel 5B072900-civil Engineering


Topic: "Dormitory with sport complex in Almaty City"

The following tasks were solved in the work: a space-planning decision was made, the thermomechanical calculation of the enclosing structures was performed, the calculation and design of building structures, technological maps, and a construction plan were developed, and the cost of construction was also calculated.

The student successfully completed all the tasks. Sadat Said Muzamel conducted an initial study of the assignment at a good level, competently conducted analysis of data from literary sources, applied many years of experience in designing this type of building, based on various design guidelines in the design and construction and technological sections. According to the calculations, the cost of construction was calculated. The design assignment was completed in full.

In the process, the student showed responsibility, creative and analytical thinking, independence and showed well knowledge on completed during the educational process.

The project was carried out at a good level and the work fully meets the requirements for graduation projects of the "bachelor" level, the student is allowed to defend.

